Kir1.1
1054 literature references associated to Kir1.1
1
Swale DR
et al.
ML418: The First Selective, Sub-Micromolar Pore Blocker of Kir7.1 Potassium Channels.
ACS Chem Neurosci,
2016
May
24
, ().
2
Su XT
et al.
Disruption of KCNJ10 (Kir4.1) stimulates the expression of ENaC in the collecting duct.
Am. J. Physiol. Renal Physiol.,
2016
May
1
, 310 (F985-93).
3
Dong K
et al.
ROMK1 Knockout Mice Do Not Produce Bartter's Phenotype But Exhibit Impaired K Excretion.
J. Biol. Chem.,
2016
Jan
4
, ().
4
Andrikopoulos S
et al.
Identification of ABCC8 as a contributory gene to impaired early-phase insulin secretion in NZO mice.
J. Endocrinol.,
2016
Jan
, 228 (61-73).
5
Kuhn M
et al.
Rare KCNJ18 variants do not explain hypokalaemic periodic paralysis in 263 unrelated patients.
J. Neurol. Neurosurg. Psychiatr.,
2016
Jan
, 87 (49-52).
6
McMillan T
et al.
Neonatal diabetes and protein losing enteropathy: a case report.
BMC Med. Genet.,
2016
, 17 (32).
7
Zaragoza MV
et al.
Exome Sequencing Identifies a Novel LMNA Splice-Site Mutation and Multigenic Heterozygosity of Potential Modifiers in a Family with Sick Sinus Syndrome, Dilated Cardiomyopathy, and Sudden Cardiac Death.
PLoS ONE,
2016
, 11 (e0155421).
8
de Baaij JH
et al.
P2X6 Knockout Mice Exhibit Normal Electrolyte Homeostasis.
PLoS ONE,
2016
, 11 (e0156803).
9
Nikitin AG
et al.
[Association of the polymorphisms of the FTO, KCNJ11, SLC30A8 and CDKN2B genes with type 2 diabetes].
Mol. Biol. (Mosk.),
2015 Jan-Feb
, 49 (119-28).
10
Sitprija V
et al.
Animal toxins and renal ion transport: Another dimension in tropical nephrology.
Nephrology (Carlton),
2015
Sep
30
, ().
11
Furukawa F
et al.
In vivo and in vitro effects of high-K(+) stress on branchial expression of ROMKa in seawater-acclimated Mozambique tilapia.
Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.,
2015
Sep
, 187 (111-8).
12
Wang L
et al.
Caveolin-1 Deficiency Inhibits the Basolateral K+ Channels in the Distal Convoluted Tubule and Impairs Renal K+ and Mg2+ Transport.
J. Am. Soc. Nephrol.,
2015
Nov
, 26 (2678-90).
13
Qian Y
et al.
Joint effect of CENTD2 and KCNQ1 polymorphisms on the risk of type 2 diabetes mellitus among Chinese Han population.
Mol. Cell. Endocrinol.,
2015
May
15
, 407 (46-51).
14
Bonfanti DH
et al.
ATP-dependent potassium channels and type 2 diabetes mellitus.
Clin. Biochem.,
2015
May
, 48 (476-82).
15
Swale DR
et al.
Computational and Functional Analyses of a Small-Molecule Binding Site in ROMK.
Biophys. J.,
2015
Mar
10
, 108 (1094-103).
16
Chan KH
et al.
Genetic Variations in Magnesium-Related Ion Channels May Affect Diabetes Risk among African American and Hispanic American Women.
J. Nutr.,
2015
Mar
, 145 (418-24).
17
Khan AO
et al.
A distinct vitreo-retinal dystrophy with early-onset cataract from recessive KCNJ13 mutations.
Ophthalmic Genet.,
2015
Mar
, 36 (79-84).
18
Harel S
et al.
Alternating hypoglycemia and hyperglycemia in a toddler with a homozygous p.R1419H ABCC8 mutation: an unusual clinical picture.
J. Pediatr. Endocrinol. Metab.,
2015
Mar
, 28 (345-51).
19
Dai AI
et al.
Contribution of KCNJ10 gene polymorphisms in childhood epilepsy.
J. Child Neurol.,
2015
Mar
, 30 (296-300).
20
Zhang C
et al.
KCNJ10 (Kir4.1) is expressed in the basolateral membrane of the cortical thick ascending limb.
Am. J. Physiol. Renal Physiol.,
2015
Jun
1
, 308 (F1288-96).
21
Zhuang L
et al.
The E23K and A190A variations of the KCNJ11 gene are associated with early-onset type 2 diabetes and blood pressure in the Chinese population.
Mol. Cell. Biochem.,
2015
Jun
, 404 (133-41).
22
Khawash P
et al.
Nifedipine in Congenital Hyperinsulinism - A Case Report.
J Clin Res Pediatr Endocrinol,
2015
Jun
, 7 (151-4).
23
Walsh SP
et al.
Discovery of a Potent and Selective ROMK Inhibitor with Pharmacokinetic Properties Suitable for Preclinical Evaluation.
ACS Med Chem Lett,
2015
Jul
9
, 6 (747-52).
24
Liu BC
et al.
Lovastatin-Induced Phosphatidylinositol-4-Phosphate 5-Kinase Diffusion from Microvilli Stimulates ROMK Channels.
J. Am. Soc. Nephrol.,
2015
Jul
, 26 (1576-87).
25
Zhang M
et al.
Sulfonylurea in the treatment of neonatal diabetes mellitus children with heterogeneous genetic backgrounds.
J. Pediatr. Endocrinol. Metab.,
2015
Jul
, 28 (877-84).
26
Vucic E
et al.
Kir1.1 (ROMK) and Kv7.1 (KCNQ1/KvLQT1) are essential for normal gastric acid secretion: importance of functional Kir1.1.
Pflugers Arch.,
2015
Jul
, 467 (1457-68).
27
Thurber BW
et al.
Age at the time of sulfonylurea initiation influences treatment outcomes in KCNJ11-related neonatal diabetes.
Diabetologia,
2015
Jul
, 58 (1430-5).
28
Pattnaik BR
et al.
A Novel KCNJ13 Nonsense Mutation and Loss of Kir7.1 Channel Function Causes Leber Congenital Amaurosis (LCA16).
Hum. Mutat.,
2015
Jul
, 36 (720-7).
29
Chen J
et al.
[EAST/SeSAME syndrome and functional expression of inward rectifier potassium channel Kir4.1 in the inner ear].
Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi,
2015
Jul
, 29 (1318-22).
30
Gleason CE
et al.
mTORC2 regulates renal tubule sodium uptake by promoting ENaC activity.
J. Clin. Invest.,
2015
Jan
, 125 (117-28).
31
de Bruijn PI
et al.
P2X receptors trigger intracellular alkalization in isolated perfused mouse medullary thick ascending limb.
Acta Physiol (Oxf),
2015
Jan
, 213 (277-84).
32
Wright PD
et al.
A High-Throughput Electrophysiology Assay Identifies Inhibitors of the Inwardly Rectifying Potassium Channel Kir7.1.
J Biomol Screen,
2015
Feb
5
, ().
33
Gong C
et al.
Congenital hyperinsulinism in Chinese patients: 5-yr treatment outcome of 95 clinical cases with genetic analysis of 55 cases.
Pediatr Diabetes,
2015
Feb
2
, ().
34
Guo Z
et al.
KCNJ1 inhibits tumor proliferation and metastasis and is a prognostic factor in clear cell renal cell carcinoma.
Tumour Biol.,
2015
Feb
, 36 (1251-9).
35
Bertram KL
et al.
Ion channel expression and function in normal and osteoarthritic human synovial fluid progenitor cells.
Channels (Austin),
2015
Dec
2
, (1-10).
36
Slaats GG
et al.
Screen-based identification and validation of four new ion channels as regulators of renal ciliogenesis.
J. Cell. Sci.,
2015
Dec
15
, 128 (4550-9).
37
Baier LJ
et al.
ABCC8 R1420H Loss-of-Function Variant in a Southwest American Indian Community: Association With Increased Birth Weight and Doubled Risk of Type 2 Diabetes.
Diabetes,
2015
Dec
, 64 (4322-32).
38
Rozenkova K
et al.
High Incidence of Heterozygous ABCC8 and HNF1A Mutations in Czech Patients With Congenital Hyperinsulinism.
J. Clin. Endocrinol. Metab.,
2015
Dec
, 100 (E1540-9).
39
Yuan J
et al.
Potassium channel KCNJ15 is required for histamine-stimulated gastric acid secretion.
Am. J. Physiol., Cell Physiol.,
2015
Aug
15
, 309 (C264-70).
40
Henn MC
et al.
Adenosine Triphosphate-Sensitive Potassium Channel Kir Subunits Implicated in Cardioprotection by Diazoxide.
J Am Heart Assoc,
2015
Aug
, 4 (e002016).
41
Lin DH
et al.
Src-family protein tyrosine kinase phosphorylates WNK4 and modulates its inhibitory effect on KCNJ1 (ROMK).
Proc. Natl. Acad. Sci. U.S.A.,
2015
Apr
7
, 112 (4495-500).
42
Zúñiga-García V
et al.
Differential Expression of Ion Channels and Transporters During Hepatocellular Carcinoma Development.
Dig. Dis. Sci.,
2015
Apr
5
, ().
43
Peña-Almazan S
Successful transition to sulfonylurea in neonatal diabetes, developmental delay, and seizures (DEND syndrome) due to R50P KCNJ11 mutation.
Diabetes Res. Clin. Pract.,
2015
Apr
, 108 (e18-20).
44
Nakajima K
et al.
KCNJ15/Kir4.2 couples with polyamines to sense weak extracellular electric fields in galvanotaxis.
Nat Commun,
2015
, 6 (8532).
45
Rohdin C
et al.
A KCNJ10 mutation previously identified in the Russell group of terriers also occurs in Smooth-Haired Fox Terriers with hereditary ataxia and in related breeds.
Acta Vet. Scand.,
2015
, 57 (26).
46
Sokolova EA
et al.
Replication of KCNJ11 (p.E23K) and ABCC8 (p.S1369A) Association in Russian Diabetes Mellitus 2 Type Cohort and Meta-Analysis.
PLoS ONE,
2015
, 10 (e0124662).
47
Kim SH
et al.
Electrogenic transport and K(+) ion channel expression by the human endolymphatic sac epithelium.
Sci Rep,
2015
, 5 (18110).
48
Doupnik CA
et al.
A computational design approach for virtual screening of peptide interactions across K(+) channel families.
Comput Struct Biotechnol J,
2015
, 13 (85-94).
49
Cazals Y
et al.
KCNK5 channels mostly expressed in cochlear outer sulcus cells are indispensable for hearing.
Nat Commun,
2015
, 6 (8780).
50
Haghvirdizadeh P
et al.
KCNJ11: Genetic Polymorphisms and Risk of Diabetes Mellitus.
J Diabetes Res,
2015
, 2015 (908152).
51
Lee BH
et al.
Three novel pathogenic mutations in KATP channel genes and somatic imprinting alterations of the 11p15 region in pancreatic tissue in patients with congenital hyperinsulinism.
Horm Res Paediatr,
2015
, 83 (204-10).
52
Sackin H
et al.
Direct injection of cell-free Kir1.1 protein into Xenopus oocytes replicates single-channel currents derived from Kir1.1 mRNA.
Channels (Austin),
2015
, 9 (196-9).
53
Arai E
et al.
Ablation of Kcnj10 expression in retinal explants revealed pivotal roles for Kcnj10 in the proliferation and development of Müller glia.
Mol. Vis.,
2015
, 21 (148-59).
54
Martelli A
et al.
Inhibitors of the renal outer medullary potassium channel: a patent review.
Expert Opin Ther Pat,
2015
, 25 (1035-51).
55
Kharade SV
et al.
ROMK (Kir1.1) pharmacology comes of age.
Channels (Austin),
2015
, 9 (119-20).
56
Senniappan S
et al.
Genotype and phenotype correlations in Iranian patients with hyperinsulinaemic hypoglycaemia.
BMC Res Notes,
2015
, 8 (350).
57
Li X
et al.
The clinical and genetic features in a cohort of mainland Chinese patients with thyrotoxic periodic paralysis.
BMC Neurol,
2015
, 15 (38).
58
Villanueva S
et al.
Cleft Palate, Moderate Lung Developmental Retardation and Early Postnatal Lethality in Mice Deficient in the Kir7.1 Inwardly Rectifying K+ Channel.
PLoS ONE,
2015
, 10 (e0139284).
59
Guo Y
et al.
Common variants of KCNJ10 are associated with susceptibility and anti-epileptic drug resistance in Chinese genetic generalized epilepsies.
PLoS ONE,
2015
, 10 (e0124896).
60
Baturin AK
et al.
[The study of the association of polymorphism rs5219 gene KCNJ11 with obesity and the risk of type 2 diabetes among residents of the Moscow Region].
Vopr Pitan,
2015
, 84 (4-9).
61
Liu NJ
et al.
An analysis of the association between a polymorphism of KCNJ11 and diabetic retinopathy in a Chinese Han population.
Eur. J. Med. Res.,
2015
, 20 (3).
62
Zhong H
et al.
CRISPR-engineered mosaicism rapidly reveals that loss of Kcnj13 function in mice mimics human disease phenotypes.
Sci Rep,
2015
, 5 (8366).
63
Gilliam D
et al.
A homozygous KCNJ10 mutation in Jack Russell Terriers and related breeds with spinocerebellar ataxia with myokymia, seizures, or both.
J. Vet. Intern. Med.,
2014 May-Jun
, 28 (871-7).
64
Jindal R
et al.
Novel mutation c.597_598dup in exon 5 of ABCC8 gene causing congenital hyperinsulinism.
Diabetes Metab Syndr,
2014 Jan-Mar
, 8 (45-7).
65
Abujbara MA
et al.
Permanent neonatal diabetes mellitus in Jordan.
J. Pediatr. Endocrinol. Metab.,
2014
Sep
, 27 (879-83).
66
Jahnavi S
et al.
Novel ABCC8 (SUR1) gene mutations in Asian Indian children with congenital hyperinsulinemic hypoglycemia.
Ann. Hum. Genet.,
2014
Sep
, 78 (311-9).
67
Parvizi Z
et al.
Association between E23K variant in KCNJ11 gene and new-onset diabetes after liver transplantation.
Mol. Biol. Rep.,
2014
Sep
, 41 (6063-9).
68
Lee CH
et al.
Pregabalin activates ROMK1 channels via cAMP-dependent protein kinase and protein kinase C.
Eur. J. Pharmacol.,
2014
Oct
5
, 740 (35-44).
69
Wang L
et al.
Kcnj10 is a major type of K+ channel in mouse corneal epithelial cells and plays a role in initiating EGFR signaling.
Am. J. Physiol., Cell Physiol.,
2014
Oct
15
, 307 (C710-7).
70
Wei Y
et al.
Angiotensin II type 2 receptor regulates ROMK-like K⁺ channel activity in the renal cortical collecting duct during high dietary K⁺ adaptation.
Am. J. Physiol. Renal Physiol.,
2014
Oct
1
, 307 (F833-43).
71
Benrahma H
et al.
Association analysis of IGF2BP2, KCNJ11, and CDKAL1 polymorphisms with type 2 diabetes mellitus in a Moroccan population: a case-control study and meta-analysis.
Biochem. Genet.,
2014
Oct
, 52 (430-42).
72
Li Q
et al.
KCNJ11 E23K variant is associated with the therapeutic effect of sulphonylureas in Chinese type 2 diabetic patients.
Clin. Exp. Pharmacol. Physiol.,
2014
Oct
, 41 (748-54).
73
Zhuo JL
AT2 receptors in cortical collecting ducts: a novel role in mediating ROMK-like K(+) channel responses to high dietary K(+)?
Am. J. Physiol. Renal Physiol.,
2014
Nov
15
, 307 (F1134-5).
74
Thewjitcharoen Y
et al.
Permanent neonatal diabetes misdiagnosed as type 1 diabetes in a 28-year-old female: a life-changing diagnosis.
Diabetes Res. Clin. Pract.,
2014
Nov
, 106 (e22-4).
75
Kalaivanan P
et al.
Chromosome 6q24 transient neonatal diabetes mellitus and protein sensitive hyperinsulinaemic hypoglycaemia.
J. Pediatr. Endocrinol. Metab.,
2014
Nov
, 27 (1065-9).
76
Maiorana A
et al.
Focal congenital hyperinsulinism managed by medical treatment: a diagnostic algorithm based on molecular genetic screening.
Clin. Endocrinol. (Oxf),
2014
Nov
, 81 (679-88).
77
Zhu X
et al.
Calcium intake and ion transporter genetic polymorphisms interact in human colorectal neoplasia risk in a 2-phase study.
J. Nutr.,
2014
Nov
, 144 (1734-41).
78
Anık A
et al.
A novel activating ABCC8 mutation underlying neonatal diabetes mellitus in an infant presenting with cerebral sinovenous thrombosis.
J. Pediatr. Endocrinol. Metab.,
2014
May
, 27 (533-7).
79
Sang Y
et al.
KCNJ11 gene mutation analysis on nine Chinese patients with type 1B diabetes diagnosed before 3 years of age.
J. Pediatr. Endocrinol. Metab.,
2014
May
, 27 (519-23).
80
Doneray H
et al.
Permanent neonatal diabetes mellitus caused by a novel mutation in the KCNJ11 gene.
J. Pediatr. Endocrinol. Metab.,
2014
Mar
, 27 (367-71).
81
Nwaobi SE
et al.
DNA methylation functions as a critical regulator of Kir4.1 expression during CNS development.
Glia,
2014
Mar
, 62 (411-27).
82
Turki A
et al.
Gender-dependent associations of CDKN2A/2B, KCNJ11, POLI, SLC30A8, and TCF7L2 variants with type 2 diabetes in (North African) Tunisian Arabs.
Diabetes Res. Clin. Pract.,
2014
Mar
, 103 (e40-3).
83
Bollepalli MK
et al.
State-Dependent Network Connectivity Determines Gating in a K(+) Channel.
Structure,
2014
Jun
24
, ().
84
Cheung So E
et al.
High effectiveness of triptolide, an active diterpenoid triepoxide, in suppressing Kir-channel currents from human glioma cells.
Eur. J. Pharmacol.,
2014
Jun
11
, ().
85
Li HX
et al.
GATA-4 induces changes in electrophysiological properties of rat mesenchymal stem cells.
Biochim. Biophys. Acta,
2014
Jun
, 1840 (2060-9).
86
Zhang H
et al.
Enhanced excitability of primary sensory neurons and altered gene expression of neuronal ion channels in dorsal root ganglion in paclitaxel-induced peripheral neuropathy.
Anesthesiology,
2014
Jun
, 120 (1463-75).
87
Demirbilek H
et al.
Clinical characteristics and phenotype-genotype analysis in Turkish patients with congenital hyperinsulinism; predominance of recessive KATP channel mutations.
Eur. J. Endocrinol.,
2014
Jun
, 170 (885-92).
88
Abdelhamid I
et al.
E23K variant in KCNJ11 gene is associated with susceptibility to type 2 diabetes in the Mauritanian population.
Prim Care Diabetes,
2014
Jul
, 8 (171-5).
89
Cooper PE
et al.
Cantú syndrome resulting from activating mutation in the KCNJ8 gene.
Hum. Mutat.,
2014
Jul
, 35 (809-13).
90
Lang F
et al.
Regulation of transport across cell membranes by the serum- and glucocorticoid-inducible kinase SGK1.
Mol. Membr. Biol.,
2014
Jan
14
, ().
91
Lin DH
et al.
MicroRNA-194 (miR-194) regulates ROMK channel activity by targeting intersectin 1.
Am. J. Physiol. Renal Physiol.,
2014
Jan
1
, 306 (F53-60).
92
Garcia ML
et al.
Pharmacologic inhibition of the renal outer medullary potassium channel causes diuresis and natriuresis in the absence of kaliuresis.
J. Pharmacol. Exp. Ther.,
2014
Jan
, 348 (153-64).
93
Welling PA
Rare mutations in renal sodium and potassium transporter genes exhibit impaired transport function.
Curr. Opin. Nephrol. Hypertens.,
2014
Jan
, 23 (1-8).
94
Xia XH
et al.
[Effects of E23K polymorphism in KCNJ11 gene on membrane current].
Zhongguo Ying Yong Sheng Li Xue Za Zhi,
2014
Jan
, 30 (23-6).
95
Phani NM
et al.
Genetic association of KCNJ10 rs1130183 with seizure susceptibility and computational analysis of deleterious non-synonymous SNPs of KCNJ10 gene.
Gene,
2014
Feb
25
, 536 (247-53).
96
Glaudemans B
et al.
A primary culture system of mouse thick ascending limb cells with preserved function and uromodulin processing.
Pflugers Arch.,
2014
Feb
, 466 (343-56).
97
Huang L
et al.
Nephrocalcinosis as adult presentation of Bartter syndrome type II.
Neth J Med,
2014
Feb
, 72 (91-3).
98
Furukawa F
et al.
Gene expression and cellular localization of ROMKs in the gills and kidney of Mozambique tilapia acclimated to fresh water with high potassium concentration.
Am. J. Physiol. Regul. Integr. Comp. Physiol.,
2014
Dec
1
, 307 (R1303-12).
99
Arya VB
et al.
Clinical and histological heterogeneity of congenital hyperinsulinism due to paternally inherited heterozygous ABCC8/KCNJ11 mutations.
Eur. J. Endocrinol.,
2014
Dec
, 171 (685-95).
100
Myngheer N
et al.
Fetal macrosomia and neonatal hyperinsulinemic hypoglycemia associated with transplacental transfer of sulfonylurea in a mother with KCNJ11-related neonatal diabetes.
Diabetes Care,
2014
Dec
, 37 (3333-5).
101
Carmody D
et al.
Sulfonylurea treatment before genetic testing in neonatal diabetes: pros and cons.
J. Clin. Endocrinol. Metab.,
2014
Dec
, 99 (E2709-14).
102
Zhang C
et al.
KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1).
Proc. Natl. Acad. Sci. U.S.A.,
2014
Aug
12
, 111 (11864-9).
103
Lahmann C
et al.
A mutation causing increased KATP channel activity leads to reduced anxiety in mice.
Physiol. Behav.,
2014
Apr
22
, 129 (79-84).
104
Chen J
et al.
The role of an inwardly rectifying K(+) channel (Kir4.1) in the inner ear and hearing loss.
Neuroscience,
2014
Apr
18
, 265 (137-46).
105
Chang WL
et al.
A novel mutation of KCNJ11 gene in a patient with permanent neonatal diabetes mellitus.
Diabetes Res. Clin. Pract.,
2014
Apr
, 104 (e29-32).
106
Albaqumi M
et al.
A syndrome of congenital hyperinsulinism and rhabdomyolysis is caused by KCNJ11 mutation.
J. Med. Genet.,
2014
Apr
, 51 (271-4).
107
Klen J
et al.
CYP2C9, KCNJ11 and ABCC8 polymorphisms and the response to sulphonylurea treatment in type 2 diabetes patients.
Eur. J. Clin. Pharmacol.,
2014
Apr
, 70 (421-8).
108
Wen D
et al.
Interacting influence of diuretics and diet on BK channel-regulated K homeostasis.
Curr Opin Pharmacol,
2014
Apr
, 15 (28-32).
109
Lasram K
et al.
Evidence for association of the E23K variant of KCNJ11 gene with type 2 diabetes in Tunisian population: population-based study and meta-analysis.
Biomed Res Int,
2014
, 2014 (265274).
110
Sastre J
et al.
Long-term efficacy of glibenclamide and sitagliptin therapy in adult patients with KCNJ11 permanent diabetes.
Diabetes Care,
2014
, 37 (e55-6).
111
Qiu L
et al.
Quantitative assessment of the effect of KCNJ11 gene polymorphism on the risk of type 2 diabetes.
PLoS ONE,
2014
, 9 (e93961).
112
Juang JM
et al.
Disease-targeted sequencing of ion channel genes identifies de novo mutations in patients with non-familial Brugada syndrome.
Sci Rep,
2014
, 4 (6733).
113
Phani NM
et al.
Population specific impact of genetic variants in KCNJ11 gene to type 2 diabetes: a case-control and meta-analysis study.
PLoS ONE,
2014
, 9 (e107021).
114
Zhao J
et al.
KCNJ10 may not be a contributor to nonsyndromic enlargement of vestibular aqueduct (NSEVA) in Chinese subjects.
PLoS ONE,
2014
, 9 (e108134).
115
Fowler PW
et al.
Insights into the structural nature of the transition state in the Kir channel gating pathway.
Channels (Austin),
2014
, 8 (551-5).
116
Kumar M
et al.
Focus on Kir7.1: physiology and channelopathy.
Channels (Austin),
2014
, 8 (488-95).
117
118
Sang Y
et al.
Mutational analysis of ABCC8, KCNJ11, GLUD1, HNF4A and GCK genes in 30 Chinese patients with congenital hyperinsulinism.
Endocr. J.,
2014
, 61 (901-10).
119
Rouhier MF
et al.
Pharmacological validation of an inward-rectifier potassium (Kir) channel as an insecticide target in the yellow fever mosquito Aedes aegypti.
PLoS ONE,
2014
, 9 (e100700).
120
Durmaz E
et al.
A combination of nifedipine and octreotide treatment in an hyperinsulinemic hypoglycemic infant.
J Clin Res Pediatr Endocrinol,
2014
, 6 (119-21).
121
Elvira B
et al.
SPAK and OSR1 dependent down-regulation of murine renal outer medullary K channel ROMK1.
Kidney Blood Press. Res.,
2014
, 39 (353-60).
122
Mohnike K
et al.
Clinical and genetic evaluation of patients with KATP channel mutations from the German registry for congenital hyperinsulinism.
Horm Res Paediatr,
2014
, 81 (156-68).
123
Su C
et al.
Long-term follow-up and mutation analysis of 27 chinese cases of congenital hyperinsulinism.
Horm Res Paediatr,
2014
, 81 (169-76).
124
Keshavarz P
et al.
Lack of genetic susceptibility of KCNJ11 E23K polymorphism with risk of type 2 diabetes in an Iranian population.
Endocr. Res.,
2014
, 39 (120-5).
125
Sato Y
et al.
Moderate hypoxia induces β-cell dysfunction with HIF-1-independent gene expression changes.
PLoS ONE,
2014
, 9 (e114868).
126
[To the mechanisms of antiarrhythmic action of Allapinine].
Bioorg. Khim.,
2013 Jan-Feb
, 39 (105-16).
127
Lang F
et al.
Serum and glucocorticoid inducible kinase, metabolic syndrome, inflammation, and tumor growth.
Hormones (Athens),
2013 Apr-Jun
, 12 (160-71).
128
Duan X
Ion Channels, Channelopathies, and Tooth Formation.
J. Dent. Res.,
2013
Sep
27
, ().
129
Chai Y
et al.
Molecular etiology of hearing impairment associated with nonsyndromic enlarged vestibular aqueduct in East China.
Am. J. Med. Genet. A,
2013
Sep
, 161 (2226-33).
130
Cross JH
et al.
Neurological features of epilepsy, ataxia, sensorineural deafness, tubulopathy syndrome.
Dev Med Child Neurol,
2013
Sep
, 55 (846-56).
131
Pathare G
et al.
A molecular update on Pseudohypoaldosteronism type II.
Am. J. Physiol. Renal Physiol.,
2013
Oct
9
, ().
132
Yang H
et al.
Compromised potassium recycling in the cochlea contributes to conservation of endocochlear potential in a mouse model of age-related hearing loss.
Neurosci. Lett.,
2013
Oct
25
, 555 (97-101).
133
Wang Z
et al.
Regulation of large-conductance Ca2+-activated K+ channels by WNK4 kinase.
Am. J. Physiol., Cell Physiol.,
2013
Oct
15
, 305 (C846-53).
134
Al-Agha AE
et al.
Characterization of the ABCC8 gene mutation and phenotype in patients with congenital hyperinsulinism in western Saudi Arabia.
Saudi Med J,
2013
Oct
, 34 (1002-6).
135
Arjona FJ
et al.
Tissue-specific expression and in vivo regulation of zebrafish orthologues of mammalian genes related to symptomatic hypomagnesemia.
Pflugers Arch.,
2013
Oct
, 465 (1409-21).
136
Yue P
et al.
WNK4 inhibits Ca(2+)-activated big-conductance potassium channels (BK) via mitogen-activated protein kinase-dependent pathway.
Biochim. Biophys. Acta,
2013
Oct
, 1833 (2101-10).
137
Sherif EM
et al.
An Egyptian case of congenital hyperinsulinism of infancy due to a novel mutation in KCNJ11 encoding Kir6.2 and response to octreotide.
Acta Diabetol,
2013
Oct
, 50 (801-5).
138
Karnes JH
et al.
Association of KCNJ1 variation with change in fasting glucose and new onset diabetes during HCTZ treatment.
Pharmacogenomics J.,
2013
Oct
, 13 (430-6).
139
Pietrzak-Nowacka M
et al.
The E23K polymorphism of the KCNJ11gene is associated with lower insulin release in patients with autosomal dominant polycystic kidney disease.
Nefrologia,
2013
Nov
13
, 33 (855-8).
140
Tang H
et al.
Discovery of a novel sub-class of ROMK channel inhibitors typified by 5-(2-(4-(2-(4-(1H-Tetrazol-1-yl)phenyl)acetyl)piperazin-1-yl)ethyl)isobenzofuran-1(3H)-one.
Bioorg. Med. Chem. Lett.,
2013
Nov
1
, 23 (5829-32).
141
Shimomura K
et al.
A mouse model of human hyperinsulinism produced by the E1506K mutation in the sulphonylurea receptor SUR1.
Diabetes,
2013
Nov
, 62 (3797-806).
142
Fedele F
et al.
Role of genetic polymorphisms of ion channels in the pathophysiology of coronary microvascular dysfunction and ischemic heart disease.
Basic Res. Cardiol.,
2013
Nov
, 108 (387).
143
Busiah K
et al.
Neuropsychological dysfunction and developmental defects associated with genetic changes in infants with neonatal diabetes mellitus: a prospective cohort study [corrected].
Lancet Diabetes Endocrinol,
2013
Nov
, 1 (199-207).
144
Shibata S
et al.
Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4.
Proc. Natl. Acad. Sci. U.S.A.,
2013
May
7
, 110 (7838-43).
145
Faletra F
et al.
Congenital hyperinsulinism: clinical and molecular analysis of a large Italian cohort.
Gene,
2013
May
25
, 521 (160-5).
146
Welling PA
Regulation of renal potassium secretion: molecular mechanisms.
Semin. Nephrol.,
2013
May
, 33 (215-28).
147
Kanakatti Shankar R
et al.
Permanent neonatal diabetes mellitus: prevalence and genetic diagnosis in the SEARCH for Diabetes in Youth Study.
Pediatr Diabetes,
2013
May
, 14 (174-80).
148
Mahmood F
et al.
Generation and validation of a zebrafish model of EAST (epilepsy, ataxia, sensorineural deafness and tubulopathy) syndrome.
Dis Model Mech,
2013
May
, 6 (652-60).
149
Jahnavi S
et al.
Clinical and molecular characterization of neonatal diabetes and monogenic syndromic diabetes in Asian Indian children.
Clin. Genet.,
2013
May
, 83 (439-45).
150
Nichols CG
et al.
KATP channels and cardiovascular disease: suddenly a syndrome.
Circ. Res.,
2013
Mar
29
, 112 (1059-72).
151
Faletra F
et al.
Co-inheritance of two ABCC8 mutations causing an unresponsive congenital hyperinsulinism: clinical and functional characterization of two novel ABCC8 mutations.
Gene,
2013
Mar
1
, 516 (122-5).
152
Moritani M
et al.
Identification of INS and KCNJ11 gene mutations in type 1B diabetes in Japanese children with onset of diabetes before 5 years of age.
Pediatr Diabetes,
2013
Mar
, 14 (112-20).
153
Kara B
et al.
KCNJ10 gene mutation in an 8-year-old boy with seizures.
Acta Neurol Belg,
2013
Mar
, 113 (75-7).
154
Lorente-Cánovas B
et al.
Mice deficient in H+-ATPase a4 subunit have severe hearing impairment associated with enlarged endolymphatic compartments within the inner ear.
Dis Model Mech,
2013
Mar
, 6 (434-42).
155
Babiker T
et al.
Continue with long term sulfonylureas in patients with mutations in the KCNJ11 gene when there is evidence of response even if insulin treatment is still required.
Diabetes Res. Clin. Pract.,
2013
Jun
, 100 (e63).
156
Hussain S
et al.
Permanent neonatal diabetes due to a novel insulin signal peptide mutation.
Pediatr Diabetes,
2013
Jun
, 14 (299-303).
157
Yorifuji T
et al.
Efficacy and safety of long-term, continuous subcutaneous octreotide infusion for patients with different subtypes of KATP-channel hyperinsulinism.
Clin. Endocrinol. (Oxf),
2013
Jun
, 78 (891-7).
158
Sanda S
et al.
A SNP in G6PC2 predicts insulin secretion in type 1 diabetes.
Acta Diabetol,
2013
Jun
, 50 (459-62).
159
Saxena R
et al.
Polycystic ovary syndrome is not associated with genetic variants that mark risk of type 2 diabetes.
Acta Diabetol,
2013
Jun
, 50 (451-7).
160
Fretzayas A
et al.
Expanding the spectrum of genetic mutations in antenatal Bartter syndrome type II.
Pediatr Int,
2013
Jun
, 55 (371-3).
161
Lang F
et al.
Therapeutic potential of serum and glucocorticoid inducible kinase inhibition.
Expert Opin Investig Drugs,
2013
Jun
, 22 (701-14).
163
Zhang C
et al.
Src-family protein tyrosine kinase regulates the basolateral K channel in the distal convoluted tubule (DCT) by phosphorylation of KCNJ10.
J. Biol. Chem.,
2013
Jul
19
, ().
164
Denton JS
et al.
Invited Review - Novel Diuretic Targets.
Am. J. Physiol. Renal Physiol.,
2013
Jul
17
, ().
165
Frindt G
et al.
Inhibition of ROMK channels by low extracellular K+ and oxidative stress.
Am. J. Physiol. Renal Physiol.,
2013
Jul
15
, 305 (F208-15).
166
Arya VB
et al.
Clinical and molecular characterisation of hyperinsulinaemic hypoglycaemia in infants born small-for-gestational age.
Arch. Dis. Child. Fetal Neonatal Ed.,
2013
Jul
, 98 (F356-8).
167
Irgens HU
et al.
Prevalence of monogenic diabetes in the population-based Norwegian Childhood Diabetes Registry.
Diabetologia,
2013
Jul
, 56 (1512-9).
168
Fukuda H
et al.
Replication study for the association of a single-nucleotide polymorphism, rs3746876, within KCNJ15, with susceptibility to type 2 diabetes in a Japanese population.
J. Hum. Genet.,
2013
Jul
, 58 (490-3).
169
van der Lubbe N
et al.
Effects of angiotensin II on kinase-mediated sodium and potassium transport in the distal nephron.
Curr. Opin. Nephrol. Hypertens.,
2013
Jan
, 22 (120-6).
170
Li YY
The KCNJ11 E23K gene polymorphism and type 2 diabetes mellitus in the Chinese Han population: a meta-analysis of 6,109 subjects.
Mol. Biol. Rep.,
2013
Jan
, 40 (141-6).
171
Lang F
et al.
Regulation of ion channels by the serum- and glucocorticoid-inducible kinase SGK1.
FASEB J.,
2013
Jan
, 27 (3-12).
172
Hilder TA
et al.
Conduction and block of inward rectifier K+ channels: predicted structure of a potent blocker of Kir2.1.
Biochemistry,
2013
Feb
5
, 52 (967-74).
173
Cheng CJ
et al.
Kidney-specific WNK1 regulates sodium reabsorption and potassium secretion in mouse cortical collecting duct.
Am. J. Physiol. Renal Physiol.,
2013
Feb
15
, 304 (F397-402).
174
Ronzaud C
et al.
Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension.
J. Clin. Invest.,
2013
Feb
1
, 123 (657-65).
175
Snider KE
et al.
Genotype and phenotype correlations in 417 children with congenital hyperinsulinism.
J. Clin. Endocrinol. Metab.,
2013
Feb
, 98 (E355-63).
176
Siraskar B
et al.
Downregulation of the renal outer medullary K(+) channel ROMK by the AMP-activated protein kinase.
Pflugers Arch.,
2013
Feb
, 465 (233-45).
177
Tizioto PC
et al.
Identification of KCNJ11 as a functional candidate gene for bovine meat tenderness.
Physiol. Genomics,
2013
Dec
15
, 45 (1215-21).
178
Liu L
et al.
Mutations in KCNJ11 are associated with the development of autosomal dominant, early-onset type 2 diabetes.
Diabetologia,
2013
Dec
, 56 (2609-18).
179
Philla KQ
et al.
Successful transition from insulin to sulfonylurea therapy in a patient with monogenic neonatal diabetes owing to a KCNJ11 F333L [corrected] mutation.
Diabetes Care,
2013
Dec
, 36 (e201).
180
Üstün NU
et al.
A novel mutation in ABCC8 gene in a newborn with congenital hyperinsulinism -a case report.
Fetal Pediatr Pathol,
2013
Dec
, 32 (412-7).
181
Cha SK
et al.
Flow-induced activation of TRPV5 and TRPV6 channels stimulates Ca(2+)-activated K(+) channel causing membrane hyperpolarization.
Biochim. Biophys. Acta,
2013
Dec
, 1833 (3046-53).
182
183
Szuts V
et al.
Altered expression of genes for Kir ion channels in dilated cardiomyopathy.
Can. J. Physiol. Pharmacol.,
2013
Aug
, 91 (648-56).
184
Cabral PD
et al.
Less potassium coming out, less sodium going in: phenotyping ROMK knockout rats.
Hypertension,
2013
Aug
, 62 (240-1).
185
Zhou X
et al.
Heterozygous disruption of renal outer medullary potassium channel in rats is associated with reduced blood pressure.
Hypertension,
2013
Aug
, 62 (288-94).
186
Amin N
et al.
Refining genome-wide linkage intervals using a meta-analysis of genome-wide association studies identifies loci influencing personality dimensions.
Eur. J. Hum. Genet.,
2013
Aug
, 21 (876-82).
187
Fendler W
et al.
Switching to sulphonylureas in children with iDEND syndrome caused by KCNJ11 mutations results in improved cerebellar perfusion.
Diabetes Care,
2013
Aug
, 36 (2311-6).
188
Xu ZD
et al.
[ABCC8, KCNJ11 and GLUD1 gene mutation analysis in congenital hyperinsulinism pedigree].
Zhonghua Yi Xue Za Zhi,
2013
Apr
9
, 93 (1089-92).
189
Kapoor RR
et al.
Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism.
Eur. J. Endocrinol.,
2013
Apr
, 168 (557-64).
190
Cameron JS
et al.
Cardiac K(ATP) channel alterations associated with acclimation to hypoxia in goldfish (Carassius auratus L.).
Comp. Biochem. Physiol., Part A Mol. Integr. Physiol.,
2013
Apr
, 164 (554-64).
191
Falhammar H
et al.
Thyrotoxic periodic paralysis: clinical and molecular aspects.
Endocrine,
2013
Apr
, 43 (274-84).
192
Heo JW
et al.
Unsuccessful switch from insulin to sulfonylurea therapy in permanent neonatal diabetes mellitus due to an R201H mutation in the KCNJ11 gene: a case report.
Diabetes Res. Clin. Pract.,
2013
Apr
, 100 (e1-2).
193
Qin LJ
et al.
Meta-analysis of association of common variants in the KCNJ11-ABCC8 region with type 2 diabetes.
Genet. Mol. Res.,
2013
, 12 (2990-3002).
194
Parrock S
et al.
KCNJ10 mutations display differential sensitivity to heteromerisation with KCNJ16.
Nephron Physiol,
2013
, 123 (7-14).
195
Stawerska R
et al.
Frequency of the E23K polymorphism of the KCNJ11 gene in children born small for gestational age and its influence on auxological and metabolic parameters in the prepubertal period.
J. Pediatr. Endocrinol. Metab.,
2013
, 26 (457-62).
196
Yang W
et al.
KCNJ11 in-frame 15-bp deletion leading to glibenclamide- responsive neonatal diabetes mellitus in a Chinese child.
J. Pediatr. Endocrinol. Metab.,
2013
, 26 (591-4).
197
Khoriati D
et al.
Prematurity, macrosomia, hyperinsulinaemic hypoglycaemia and a dominant ABCC8 gene mutation.
BMJ Case Rep,
2013
, 2013 ().
198
Zschüntzsch J
et al.
Heterologous expression of a glial Kir channel (KCNJ10) in a neuroblastoma spinal cord (NSC-34) cell line.
Physiol Res,
2013
, 62 (95-105).
199
200
Raphemot R
et al.
High-throughput screening for small-molecule modulators of inward rectifier potassium channels.
J Vis Exp,
2013
, ().
201
Itoh S
et al.
DEND syndrome due to V59A mutation in KCNJ11 gene: unresponsive to sulfonylureas.
J. Pediatr. Endocrinol. Metab.,
2013
, 26 (143-6).
202
Danquah I
et al.
The TCF7L2 rs7903146 (T) allele is associated with type 2 diabetes in urban Ghana: a hospital-based case-control study.
BMC Med. Genet.,
2013
, 14 (96).
203
Lin D
et al.
Inhibition of miR-205 impairs the wound-healing process in human corneal epithelial cells by targeting KIR4.1 (KCNJ10).
Invest. Ophthalmol. Vis. Sci.,
2013
, 54 (6167-78).
204
Landa P
et al.
Lack of significant association between mutations of KCNJ10 or FOXI1 and SLC26A4 mutations in Pendred syndrome/enlarged vestibular aqueducts.
BMC Med. Genet.,
2013
, 14 (85).
205
Yang W
et al.
KCNJ11 in-frame 15-bp deletion leading to glibenclamide-responsive neonatal diabetes mellitus in a Chinese child.
J. Pediatr. Endocrinol. Metab.,
2013
, 26 (743-6).
206
McTaggart JS
et al.
Gain-of-function mutations in the K(ATP) channel (KCNJ11) impair coordinated hand-eye tracking.
PLoS ONE,
2013
, 8 (e62646).
207
Sogno Valin P
et al.
Genetic analysis of Italian patients with congenital hyperinsulinism of infancy.
Horm Res Paediatr,
2013
, 79 (236-42).
208
209
Zdebik AA
et al.
Epilepsy in kcnj10 morphant zebrafish assessed with a novel method for long-term EEG recordings.
PLoS ONE,
2013
, 8 (e79765).
210
Kota SK
et al.
Genetics of type 2 diabetes mellitus and other specific types of diabetes; its role in treatment modalities.
Diabetes Metab Syndr,
2012 Jan-Mar
, 6 (54-8).
211
Odgerel Z
et al.
Genetic variants in potassium channels are associated with type 2 diabetes in a Mongolian population.
J Diabetes,
2012
Sep
, 4 (238-42).
212
Kim JJ
et al.
Polycystic ovary syndrome is not associated with polymorphisms of the TCF7L2, CDKAL1, HHEX, KCNJ11, FTO and SLC30A8 genes.
Clin. Endocrinol. (Oxf),
2012
Sep
, 77 (439-45).
213
Fraser CS
et al.
Amino acid properties may be useful in predicting clinical outcome in patients with Kir6.2 neonatal diabetes.
Eur. J. Endocrinol.,
2012
Sep
, 167 (417-21).
214
Shah RP
et al.
Visuomotor performance in KCNJ11-related neonatal diabetes is impaired in children with DEND-associated mutations and may be improved by early treatment with sulfonylureas.
Diabetes Care,
2012
Oct
, 35 (2086-8).
215
Ragia G
et al.
Association of KCNJ11 E23K gene polymorphism with hypoglycemia in sulfonylurea-treated type 2 diabetic patients.
Diabetes Res. Clin. Pract.,
2012
Oct
, 98 (119-24).
216
Yang L
et al.
Interactions of external K+ and internal blockers in a weak inward-rectifier K+ channel.
J. Gen. Physiol.,
2012
Nov
, 140 (529-40).
217
Scholl UI
et al.
SeSAME/EAST syndrome--phenotypic variability and delayed activity of the distal convoluted tubule.
Pediatr. Nephrol.,
2012
Nov
, 27 (2081-90).
218
Mtiraoui N
et al.
Contribution of common variants of ENPP1, IGF2BP2, KCNJ11, MLXIPL, PPARγ, SLC30A8 and TCF7L2 to the risk of type 2 diabetes in Lebanese and Tunisian Arabs.
Diabetes Metab.,
2012
Nov
, 38 (444-9).
219
Tang H
et al.
Discovery of Selective Small Molecule ROMK Inhibitors as Potential New Mechanism Diuretics.
ACS Med Chem Lett,
2012
May
10
, 3 (367-72).
220
Frindt G
et al.
Effects of insulin on Na and K transporters in the rat CCD.
Am. J. Physiol. Renal Physiol.,
2012
May
, 302 (F1227-33).
221
Gong B
et al.
The effect of KCNJ11 polymorphism on the risk of type 2 diabetes: a global meta-analysis based on 49 case-control studies.
DNA Cell Biol.,
2012
May
, 31 (801-10).
222
Ko JM
et al.
E23K polymorphism of the KCNJ11 gene in Korean children with type 1 diabetes.
World J Pediatr,
2012
May
, 8 (169-72).
223
Flanagan S
et al.
Partial ABCC8 gene deletion mutations causing diazoxide-unresponsive hyperinsulinaemic hypoglycaemia.
Pediatr Diabetes,
2012
May
, 13 (285-9).
224
Gonen MS
et al.
Effects of single nucleotide polymorphisms in K(ATP) channel genes on type 2 diabetes in a Turkish population.
Arch. Med. Res.,
2012
May
, 43 (317-23).
225
Troncoso Brindeiro CM
et al.
Tempol prevents altered K(+) channel regulation of afferent arteriolar tone in diabetic rat kidney.
Hypertension,
2012
Mar
, 59 (657-64).
226
Mak CM
et al.
Personalized medicine switching from insulin to sulfonylurea in permanent neonatal diabetes mellitus dictated by a novel activating ABCC8 mutation.
Diagn. Mol. Pathol.,
2012
Mar
, 21 (56-9).
227
Tavira B
et al.
Association between a common KCNJ11 polymorphism (rs5219) and new-onset posttransplant diabetes in patients treated with Tacrolimus.
Mol. Genet. Metab.,
2012
Mar
, 105 (525-7).
228
Lang VY
et al.
Pharmacogenomic analysis of ATP-sensitive potassium channels coexpressing the common type 2 diabetes risk variants E23K and S1369A.
Pharmacogenet. Genomics,
2012
Mar
, 22 (206-14).
229
Sackin H
et al.
Residues at the outer mouth of Kir1.1 determine K-dependent gating.
Biophys. J.,
2012
Jun
20
, 102 (2742-50).
230
Jain V
et al.
Permanent neonatal diabetes caused by a novel mutation.
Indian Pediatr,
2012
Jun
, 49 (486-8).
231
Gaal Z
et al.
Sulfonylurea use during entire pregnancy in diabetes because of KCNJ11 mutation: a report of two cases.
Diabetes Care,
2012
Jun
, 35 (e40).
232
Chen K
et al.
Screening of SLC26A4, FOXI1, KCNJ10, and GJB2 in bilateral deafness patients with inner ear malformation.
Otolaryngol Head Neck Surg,
2012
Jun
, 146 (972-8).
233
Rubio-Cabezas O
et al.
KATP channel mutations in infants with permanent diabetes diagnosed after 6 months of life.
Pediatr Diabetes,
2012
Jun
, 13 (322-5).
234
Udagawa T
et al.
Inwardly rectifying potassium channel Kir4.1 is localized at the calyx endings of vestibular afferents.
Neuroscience,
2012
Jul
26
, 215 (209-16).
235
Lin DH
et al.
Protein phosphatase 1 modulates the inhibitory effect of With-no-Lysine kinase 4 on ROMK channels.
Am. J. Physiol. Renal Physiol.,
2012
Jul
1
, 303 (F110-9).
236
Ooi HL
et al.
Three cases of permanent neonatal diabetes mellitus: genotypes and management outcome.
Singapore Med J,
2012
Jul
, 53 (e142-4).
237
Okamoto K
et al.
Inhibition of glucose-stimulated insulin secretion by KCNJ15, a newly identified susceptibility gene for type 2 diabetes.
Diabetes,
2012
Jul
, 61 (1734-41).
238
Rosengren AH
et al.
Reduced insulin exocytosis in human pancreatic β-cells with gene variants linked to type 2 diabetes.
Diabetes,
2012
Jul
, 61 (1726-33).
239
Huang PT
et al.
Protein kinase C mediated pH(i)-regulation of ROMK1 channels via a phosphatidylinositol-4,5-bisphosphate-dependent mechanism.
J Mol Model,
2012
Jul
, 18 (2929-41).
240
Wang SY
et al.
[Neonatal diabetes mellitus caused by KCNJ11 mutation: a case report].
Zhongguo Dang Dai Er Ke Za Zhi,
2012
Jan
, 14 (73-5).
241
Yang L
et al.
Association between KCNJ11 gene polymorphisms and risk of type 2 diabetes mellitus in East Asian populations: a meta-analysis in 42,573 individuals.
Mol. Biol. Rep.,
2012
Jan
, 39 (645-59).
242
Fatehi M
et al.
The ATP-sensitive K(+) channel ABCC8 S1369A type 2 diabetes risk variant increases MgATPase activity.
Diabetes,
2012
Jan
, 61 (241-9).
243
Brown D
et al.
Molecular Mechanisms of Acid-Base Sensing by the Kidney.
,
2012
Feb
23
, ().
244
Yang L
et al.
Ion selectivity and current saturation in inward-rectifier K+ channels.
J. Gen. Physiol.,
2012
Feb
, 139 (145-57).
245
Okamoto T
et al.
A patient with Dent disease and features of Bartter syndrome caused by a novel mutation of CLCN5.
Eur. J. Pediatr.,
2012
Feb
, 171 (401-4).
246
Zhang W
et al.
Characterization of the R162W Kir7.1 mutation associated with Snowflake vitreoretinopathy.
Am. J. Physiol., Cell Physiol.,
2012
Dec
19
, ().
247
Gamboa-Meléndez MA
et al.
Contribution of common genetic variation to the risk of type 2 diabetes in the Mexican Mestizo population.
Diabetes,
2012
Dec
, 61 (3314-21).
248
Mohamed Z
et al.
Hyperinsulinaemic hypoglycaemia:genetic mechanisms, diagnosis and management.
J Clin Res Pediatr Endocrinol,
2012
Dec
, 4 (169-81).
249
Klupa T
et al.
Monogenic models: what have the single gene disorders taught us?
Curr. Diab. Rep.,
2012
Dec
, 12 (659-66).
250
Battaglia D
et al.
Glyburide ameliorates motor coordination and glucose homeostasis in a child with diabetes associated with the KCNJ11/S225T, del226-232 mutation.
Pediatr Diabetes,
2012
Dec
, 13 (656-60).
251
Robertson JL
et al.
Multi-ion distributions in the cytoplasmic domain of inward rectifier potassium channels.
Biophys. J.,
2012
Aug
8
, 103 (434-43).
252
Rines AK
et al.
A new pROM king for the mitoK(ATP) dance: ROMK takes the lead.
Circ. Res.,
2012
Aug
3
, 111 (392-3).
253
Foster DB
et al.
Mitochondrial ROMK channel is a molecular component of mitoK(ATP).
Circ. Res.,
2012
Aug
3
, 111 (446-54).
254
Felix JP
et al.
The Inwardly Rectifying Potassium Channel Kir1.1: Development of Functional Assays to Identify and Characterize Channel Inhibitors.
Assay Drug Dev Technol,
2012
Aug
10
, ().
255
Iwata M
et al.
Genetic risk score constructed using 14 susceptibility alleles for type 2 diabetes is associated with the early onset of diabetes and may predict the future requirement of insulin injections among Japanese individuals.
Diabetes Care,
2012
Aug
, 35 (1763-70).
256
Habeb AM
et al.
Permanent neonatal diabetes: different aetiology in Arabs compared to Europeans.
Arch. Dis. Child.,
2012
Aug
, 97 (721-3).
257
Oztekin O
et al.
Successful sulfonylurea treatment of a neonate with neonatal diabetes mellitus due to a novel missense mutation, p.P1199L, in the ABCC8 gene.
J Perinatol,
2012
Aug
, 32 (645-7).
258
Cirello V
et al.
Molecular and functional studies of 4 candidate loci in Pendred syndrome and nonsyndromic hearing loss.
Mol. Cell. Endocrinol.,
2012
Apr
4
, 351 (342-50).
259
Abbasi F
et al.
Detection of KCNJ11 gene mutations in a family with neonatal diabetes mellitus: implications for therapeutic management of family members with long-standing disease.
Mol Diagn Ther,
2012
Apr
1
, 16 (109-14).
260
Fang Q
et al.
Genetic background of Prop1(df) mutants provides remarkable protection against hypothyroidism-induced hearing impairment.
J. Assoc. Res. Otolaryngol.,
2012
Apr
, 13 (173-84).
261
Fanciullo L
et al.
Sulfonylurea-responsive neonatal diabetes mellitus diagnosed through molecular genetics in two children and in one adult after a long period of insulin treatment.
Acta Biomed,
2012
Apr
, 83 (56-61).
262
Klee P
et al.
A novel ABCC8 mutation illustrates the variability of the diabetes phenotypes associated with a single mutation.
Diabetes Metab.,
2012
Apr
, 38 (179-82).
263
Lee BH
et al.
Genetic basis of Bartter syndrome in Korea.
Nephrol. Dial. Transplant.,
2012
Apr
, 27 (1516-21).
264
Barajas-Martinez H
et al.
Molecular genetic and functional association of Brugada and early repolarization syndromes with S422L missense mutation in KCNJ8.
Heart Rhythm,
2012
Apr
, 9 (548-55).
265
Javorsky M
et al.
KCNJ11 gene E23K variant and therapeutic response to sulfonylureas.
Eur. J. Intern. Med.,
2012
Apr
, 23 (245-9).
266
Huang CL
Regulation of ion channels by secreted klotho.
Adv. Exp. Med. Biol.,
2012
, 728 (100-6).
267
Fatima N
et al.
Promoter DNA methylation regulates murine SUR1 (Abcc8) and SUR2 (Abcc9) expression in HL-1 cardiomyocytes.
PLoS ONE,
2012
, 7 (e41533).
268
Houtman MJ
et al.
Experimental Mapping of the Canine KCNJ2 and KCNJ12 Gene Structures and Functional Analysis of the Canine K(IR)2.2 ion Channel.
Front Physiol,
2012
, 3 (9).
269
Bonnefond A
et al.
Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene.
PLoS ONE,
2012
, 7 (e37423).
270
Dupont J
et al.
Permanent neonatal diabetes mellitus due to KCNJ11 mutation in a Portuguese family: transition from insulin to oral sulfonylureas.
J. Pediatr. Endocrinol. Metab.,
2012
, 25 (367-70).
271
Morris LM
et al.
Mouse middle ear ion homeostasis channels and intercellular junctions.
PLoS ONE,
2012
, 7 (e39004).
272
Zurolo E
et al.
Regulation of Kir4.1 expression in astrocytes and astrocytic tumors: a role for interleukin-1 β.
J Neuroinflammation,
2012
, 9 (280).
273
Adalsteinsson BT
et al.
Heterogeneity in white blood cells has potential to confound DNA methylation measurements.
PLoS ONE,
2012
, 7 (e46705).
274
Winkler G
et al.
[Pharmacogenetics of insulin secretagogue antidiabetics].
Orv Hetil,
2011
Oct
9
, 152 (1651-60).
275
Henquin JC
et al.
In vitro insulin secretion by pancreatic tissue from infants with diazoxide-resistant congenital hyperinsulinism deviates from model predictions.
J. Clin. Invest.,
2011
Oct
3
, 121 (3932-42).
276
Kapoor RR
et al.
Hyperinsulinaemic hypoglycaemia and diabetes mellitus due to dominant ABCC8/KCNJ11 mutations.
Diabetologia,
2011
Oct
, 54 (2575-83).
277
Iafusco D
et al.
No beta cell desensitisation after a median of 68 months on glibenclamide therapy in patients with KCNJ11-associated permanent neonatal diabetes.
Diabetologia,
2011
Oct
, 54 (2736-8).
278
He W
et al.
Acid secretion-associated translocation of KCNJ15 in gastric parietal cells.
Am. J. Physiol. Gastrointest. Liver Physiol.,
2011
Oct
, 301 (G591-600).
279
Glaser B
et al.
ABCC8 mutation allele frequency in the Ashkenazi Jewish population and risk of focal hyperinsulinemic hypoglycemia.
Genet. Med.,
2011
Oct
, 13 (891-4).
280
Burge JA
et al.
Novel Insights into the Pathomechanisms of Skeletal Muscle Channelopathies.
,
2011
Nov
15
, ().
281
282
Haj-Yasein NN
et al.
Evidence that compromised K+ spatial buffering contributes to the epileptogenic effect of mutations in the human Kir4.1 gene (KCNJ10).
Glia,
2011
Nov
, 59 (1635-42).
283
Liu W
et al.
Role of NKCC in BK channel-mediated net K⁺ secretion in the CCD.
Am. J. Physiol. Renal Physiol.,
2011
Nov
, 301 (F1088-97).
284
Joshi R
et al.
Neonatal diabetes mellitus due to L233F mutation in the KCNJ11 gene.
World J Pediatr,
2011
Nov
, 7 (371-2).
285
Russo C
et al.
Mother and daughter carrying the same KCNJ11 mutation but with a different response to switching from insulin to sulfonylurea.
Diabetes Res. Clin. Pract.,
2011
Nov
, 94 (e50-2).
286
Edvinsson JM
et al.
Kir4.1 K (+) channels are regulated by external cations.
,
2011
May
1
, 5 ().
287
Banerjee I
et al.
The contribution of rapid KATP channel gene mutation analysis to the clinical management of children with congenital hyperinsulinism.
Eur. J. Endocrinol.,
2011
May
, 164 (733-40).
288
Mercer S
et al.
Identification of SLC26A4 mutations in patients with hearing loss and enlarged vestibular aqueduct using high-resolution melting curve analysis.
Genet Test Mol Biomarkers,
2011
May
, 15 (365-8).
289
Frindt G
et al.
Conservation of Na+ versus K+ by the rat cortical collecting duct.
,
2011
Mar
30
, ().
290
Hoorn EJ
et al.
The WNK Kinase Network Regulating Sodium, Potassium, and Blood Pressure.
,
2011
Mar
24
, ().
291
Sackin H
et al.
Modulation of Kir1.1 inactivation by extracellular Ca and Mg.
Biophys. J.,
2011
Mar
2
, 100 (1207-15).
292
Abbas L
et al.
Functional and developmental expression of a zebrafish Kir1.1 (ROMK) potassium channel homologue Kcnj1.
J. Physiol. (Lond.),
2011
Mar
15
, 589 (1489-503).
293
Vangipurapu J
et al.
Association of indices of liver and adipocyte insulin resistance with 19 confirmed susceptibility loci for type 2 diabetes in 6,733 non-diabetic Finnish men.
Diabetologia,
2011
Mar
, 54 (563-71).
294
Ioannou YS
et al.
KCNJ11 activating mutations cause both transient and permanent neonatal diabetes mellitus in Cypriot patients.
Pediatr Diabetes,
2011
Mar
, 12 (133-7).
295
Cheng CJ
et al.
Activation of PI3-kinase stimulates endocytosis of ROMK via Akt1/SGK1-dependent phosphorylation of WNK1.
J. Am. Soc. Nephrol.,
2011
Mar
, 22 (460-71).
296
Paulais M
et al.
Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome.
Proc. Natl. Acad. Sci. U.S.A.,
2011
Jun
21
, 108 (10361-6).
297
Männikkö R
et al.
Mutations of the same conserved glutamate residue in NBD2 of the sulfonylurea receptor 1 subunit of the KATP channel can result in either hyperinsulinism or neonatal diabetes.
Diabetes,
2011
Jun
, 60 (1813-22).
298
Nieves-Rivera F
et al.
Neonatal diabetes mellitus: description of two Puerto Rican children with KCNJ11 activating gene mutation.
P R Health Sci J,
2011
Jun
, 30 (87-9).
299
Lin DH
et al.
MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1.
J. Am. Soc. Nephrol.,
2011
Jun
, 22 (1087-98).
300
Park SE
et al.
Characterization of ABCC8 and KCNJ11 gene mutations and phenotypes in Korean patients with congenital hyperinsulinism.
Eur. J. Endocrinol.,
2011
Jun
, 164 (919-26).
301
MacMullen CM
et al.
Diazoxide-unresponsive congenital hyperinsulinism in children with dominant mutations of the β-cell sulfonylurea receptor SUR1.
Diabetes,
2011
Jun
, 60 (1797-804).
302
Flanagan SE
et al.
Dominantly acting ABCC8 mutations in patients with medically unresponsive hyperinsulinaemic hypoglycaemia.
Clin. Genet.,
2011
Jun
, 79 (582-7).
303
Fila M
et al.
Inhibition of K+ secretion in the distal nephron in nephrotic syndrome: possible role of albuminuria.
J. Physiol. (Lond.),
2011
Jul
15
, 589 (3611-21).
304
Sergouniotis PI
et al.
Recessive mutations in KCNJ13, encoding an inwardly rectifying potassium channel subunit, cause leber congenital amaurosis.
Am. J. Hum. Genet.,
2011
Jul
15
, 89 (183-90).
305
Sicca F
et al.
Autism with seizures and intellectual disability: possible causative role of gain-of-function of the inwardly-rectifying K+ channel Kir4.1.
Neurobiol. Dis.,
2011
Jul
, 43 (239-47).
306
Russo L
et al.
Permanent diabetes during the first year of life: multiple gene screening in 54 patients.
Diabetologia,
2011
Jul
, 54 (1693-701).
307
Shen Q
et al.
No association between the KCNH1, KCNJ10 and KCNN3 genes and schizophrenia in the Han Chinese population.
Neurosci. Lett.,
2011
Jan
3
, 487 (61-5).
308
Winther SA
et al.
[The effect of aldosterone A on renal potassium excretion].
Ugeskr. Laeg.,
2011
Jan
10
, 173 (126-9).
309
Ješić MM
et al.
Successful sulfonylurea treatment of a neonate with neonatal diabetes mellitus due to a new KCNJ11 mutation.
Diabetes Res. Clin. Pract.,
2011
Jan
, 91 (e1-3).
310
Qubbaj W
et al.
First successful application of preimplantation genetic diagnosis and haplotyping for congenital hyperinsulinism.
Reprod. Biomed. Online,
2011
Jan
, 22 (72-9).
311
Bhave G
et al.
Development of a selective small-molecule inhibitor of Kir1.1, the renal outer medullary potassium channel.
Mol. Pharmacol.,
2011
Jan
, 79 (42-50).
312
Yorifuji T
et al.
Molecular and clinical analysis of Japanese patients with persistent congenital hyperinsulinism: predominance of paternally inherited monoallelic mutations in the KATP channel genes.
J. Clin. Endocrinol. Metab.,
2011
Jan
, 96 (E141-5).
313
Loechner KJ
et al.
Congenital hyperinsulinism and glucose hypersensitivity in homozygous and heterozygous carriers of Kir6.2 (KCNJ11) mutation V290M mutation: K(ATP) channel inactivation mechanism and clinical management.
Diabetes,
2011
Jan
, 60 (209-17).
314
Saint-Martin C
et al.
KATP channel mutations in congenital hyperinsulinism.
Semin. Pediatr. Surg.,
2011
Feb
, 20 (18-22).
315
Yue P
et al.
Angiotensin II diminishes the effect of SGK1 on the WNK4-mediated inhibition of ROMK1 channels.
Kidney Int.,
2011
Feb
, 79 (423-31).
316
Hoover RS
Angiotensin II: a candidate for an aldosterone-independent mediator of potassium preservation during volume depletion.
Kidney Int.,
2011
Feb
, 79 (377-9).
317
Alper SL
et al.
Native and recombinant Slc26a3 (downregulated in adenoma, Dra) do not exhibit properties of 2Cl-/1HCO3- exchange.
Am. J. Physiol., Cell Physiol.,
2011
Feb
, 300 (C276-86).
318
Furukawa F
et al.
Potassium excretion through ROMK potassium channel expressed in gill mitochondrion-rich cells of Mozambique tilapia.
,
2011
Dec
28
, ().
319
Edvinsson JM
et al.
Potassium-dependent activation of Kir4.2 K⁺ channels.
J. Physiol. (Lond.),
2011
Dec
15
, 589 (5949-63).
320
Boodram LG
et al.
Association of the KCNJ11 variant E23K with type 2 diabetes in Indo-Trinidadians.
West Indian Med J,
2011
Dec
, 60 (604-7).
321
Greeley SA
et al.
Neonatal diabetes: an expanding list of genes allows for improved diagnosis and treatment.
Curr. Diab. Rep.,
2011
Dec
, 11 (519-32).
322
Cheng CJ
et al.
Identification and functional characterization of Kir2.6 mutations associated with non-familial hypokalemic periodic paralysis.
J. Biol. Chem.,
2011
Aug
5
, 286 (27425-35).
323
Zhuang J
et al.
WNK4 kinase inhibits Maxi K channel activity by a kinase-dependent mechanism.
Am. J. Physiol. Renal Physiol.,
2011
Aug
, 301 (F410-9).
324
Duan RF
et al.
Association of the antihypertensive response of iptakalim with KCNJ11 (Kir6.2 gene) polymorphisms in Chinese Han hypertensive patients.
Acta Pharmacol. Sin.,
2011
Aug
, 32 (1078-84).
325
Sharma A
et al.
A novel compound heterozygous ROMK mutation presenting as late onset Bartter syndrome associated with nephrocalcinosis and elevated 1,25(OH)(2) vitamin D levels.
Clin. Exp. Nephrol.,
2011
Aug
, 15 (572-6).
326
Thompson DA
et al.
Altered electroretinograms in patients with KCNJ10 mutations and EAST syndrome.
J. Physiol. (Lond.),
2011
Apr
1
, 589 (1681-9).
327
Powell PD
et al.
In vitro recovery of ATP-sensitive potassium channels in β-cells from patients with congenital hyperinsulinism of infancy.
Diabetes,
2011
Apr
, 60 (1223-8).
328
Bandulik S
et al.
The salt-wasting phenotype of EAST syndrome, a disease with multifaceted symptoms linked to the KCNJ10 K+ channel.
Pflugers Arch.,
2011
Apr
, 461 (423-35).
329
Trapp S
et al.
Respiratory responses to hypercapnia and hypoxia in mice with genetic ablation of Kir5.1 (Kcnj16).
Exp. Physiol.,
2011
Apr
, 96 (451-9).
330
Pappa KI
et al.
Gestational diabetes mellitus shares polymorphisms of genes associated with insulin resistance and type 2 diabetes in the Greek population.
Gynecol. Endocrinol.,
2011
Apr
, 27 (267-72).
331
Urbanová M
et al.
DNA analysis of renal electrolyte transporter genes among patients suffering from Bartter and Gitelman syndromes: summary of mutation screening.
Folia Biol. (Praha),
2011
, 57 (65-73).
332
Wang Y
et al.
Association of KCNJ11 with impaired glucose regulation in essential hypertension.
Genet. Mol. Res.,
2011
, 10 (1111-9).
333
Chen CP
et al.
Mosaic supernumerary r(1)(p13.2q23.3) in a 10-year-old girl with epilepsy facial asymmetry psychomotor retardation kyphoscoliosis dermatofibrosarcoma and multiple exostoses.
Genet. Couns.,
2011
, 22 (273-80).
334
Verheul JC
et al.
[Congenital hyperinsulinism in the north-east Netherlands. Clinical features and DNA diagnostics in 22 children].
Ned Tijdschr Geneeskd,
2011
, 155 (A3343).
335
Cheung CY
et al.
The KCNJ11 E23K polymorphism and progression of glycaemia in Southern Chinese: a long-term prospective study.
PLoS ONE,
2011
, 6 (e28598).
336
Renigunta A
et al.
The glycolytic enzymes glyceraldehyde 3-phosphate dehydrogenase and enolase interact with the renal epithelial K+ channel ROMK2 and regulate its function.
Cell. Physiol. Biochem.,
2011
, 28 (663-72).
337
Oçal G
et al.
Clinical characteristics of recessive and dominant congenital hyperinsulinism due to mutation(s) in the ABCC8/KCNJ11 genes encoding the ATP-sensitive potasium channel in the pancreatic beta cell.
J. Pediatr. Endocrinol. Metab.,
2011
, 24 (1019-23).
338
Siklar Z
et al.
Transient neonatal diabetes with two novel mutations in the KCNJ11 gene and response to sulfonylurea treatment in a preterm infant.
J. Pediatr. Endocrinol. Metab.,
2011
, 24 (1077-80).
339
Sang Y
et al.
AV59M KCNJ11 gene mutation leading to intermediate DEND syndrome in a Chinese child.
J. Pediatr. Endocrinol. Metab.,
2011
, 24 (763-6).
340
Jeck N
et al.
Loop disorders: insights derived from defined genotypes.
Nephron Physiol,
2011
, 118 (p7-14).
341
Kaunisto K
et al.
[From injections to pills--neonatally diagnosed diabetes of mother and baby].
Duodecim,
2011
, 127 (559-62).
342
Freudenthal B
et al.
KCNJ10 mutations disrupt function in patients with EAST syndrome.
Nephron Physiol,
2011
, 119 (p40-8).
343
Paynter JJ
et al.
Random mutagenesis screening indicates the absence of a separate H(+)-sensor in the pH-sensitive Kir channels.
Channels (Austin),
2010 Sep-Oct
, 4 (390-7).
344
Lovisolo SM
et al.
Congenital hyperinsulinism in Brazilian neonates: a study of histology, KATP channel genes, and proliferation of β cells.
Pediatr. Dev. Pathol.,
2010 Sep-Oct
, 13 (375-84).
345
Lang F
et al.
SGK, renal function and hypertension.
J. Nephrol.,
2010 Nov-Dec
, 23 Suppl 16 (S124-9).
346
Ille J
et al.
[Low doses of sulphonyluria as a successful replacement for insulin therapy in a patient with neonatal diabetes due to a mutation of KCNJ11 gene encoding Kir6.2]
Lijec Vjesn,
2010 Mar-Apr
, 132 (90-3).
347
Al-Mahdi M
et al.
Successful transfer from insulin to oral sulfonylurea in a 3-year-old girl with a mutation in the KCNJ11 gene.
Ann Saudi Med,
2010 Mar-Apr
, 30 (162-4).
349
Tang X
et al.
Variable loss of Kir4.1 channel function in SeSAME syndrome mutations.
Biochem. Biophys. Res. Commun.,
2010
Sep
3
, 399 (537-41).
350
Inyushin M
et al.
Potassium channel activity and glutamate uptake are impaired in astrocytes of seizure-susceptible DBA/2 mice.
Epilepsia,
2010
Sep
, 51 (1707-13).
351
Bennett K
et al.
Pancreatic β-cell KATP channels: Hypoglycaemia and hyperglycaemia.
Rev Endocr Metab Disord,
2010
Sep
, 11 (157-63).
352
Edghill EL
et al.
Permanent neonatal diabetes due to activating mutations in ABCC8 and KCNJ11.
Rev Endocr Metab Disord,
2010
Sep
, 11 (193-8).
353
Jonard L
et al.
Screening of SLC26A4, FOXI1 and KCNJ10 genes in unilateral hearing impairment with ipsilateral enlarged vestibular aqueduct.
Int. J. Pediatr. Otorhinolaryngol.,
2010
Sep
, 74 (1049-53).
354
Wang WH
et al.
Regulation and function of potassium channels in aldosterone-sensitive distal nephron.
Curr. Opin. Nephrol. Hypertens.,
2010
Sep
, 19 (463-70).
355
Puricelli E
et al.
Long-term follow-up of patients with Bartter syndrome type I and II.
Nephrol. Dial. Transplant.,
2010
Sep
, 25 (2976-81).
356
Hadchouel J
et al.
Decreased ENaC expression compensates the increased NCC activity following inactivation of the kidney-specific isoform of WNK1 and prevents hypertension.
Proc. Natl. Acad. Sci. U.S.A.,
2010
Oct
19
, 107 (18109-14).
357
D'Adamo MC
et al.
Genetic inactivation of KCNJ16 identifies Kir5.1 as an important determinant of neuronal PCO2/pH sensitivity.
,
2010
Nov
3
, ().
358
Renigunta A
et al.
Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function.
,
2010
Nov
16
, ().
359
Sala-Rabanal M
et al.
Molecular mechanisms of EAST/SeSAME syndrome mutations in Kir4.1 (KCNJ10).
J. Biol. Chem.,
2010
Nov
12
, 285 (36040-8).
360
Cotsapas C
et al.
Expression analysis of loci associated with type 2 diabetes in human tissues.
Diabetologia,
2010
Nov
, 53 (2334-9).
361
Bellanne-Chantelot C
et al.
ABCC8 and KCNJ11 molecular spectrum of 109 patients with diazoxide-unresponsive congenital hyperinsulinism.
J. Med. Genet.,
2010
Nov
, 47 (752-9).
362
Hugill A
et al.
A mutation in KCNJ11 causing human hyperinsulinism (Y12X) results in a glucose-intolerant phenotype in the mouse.
Diabetologia,
2010
Nov
, 53 (2352-6).
363
Furgeson SB
et al.
Mechanisms of type I and type II pseudohypoaldosteronism.
J. Am. Soc. Nephrol.,
2010
Nov
, 21 (1842-5).
364
Bogdanović R
et al.
A novel CLCN5 mutation in a boy with Bartter-like syndrome and partial growth hormone deficiency.
Pediatr. Nephrol.,
2010
Nov
, 25 (2363-8).
365
Vieira TC
et al.
Hyperinsulinemic hypoglycemia evolving to gestational diabetes and diabetes mellitus in a family carrying the inactivating ABCC8 E1506K mutation.
Pediatr Diabetes,
2010
Nov
, 11 (505-8).
366
Vendramini MF
et al.
Long-term response to sulfonylurea in a patient with diabetes due to mutation in the KCNJ11 gene.
Arq Bras Endocrinol Metabol,
2010
Nov
, 54 (682-4).
367
Sackin H
et al.
A conserved arginine near the filter of Kir1.1 controls Rb/K selectivity.
,
2010
May
6
, 4 ().
368
Klupa T
et al.
Efficacy and safety of sulfonylurea use in permanent neonatal diabetes due to KCNJ11 gene mutations: 34-month median follow-up.
Diabetes Technol. Ther.,
2010
May
, 12 (387-91).
369
Khadilkar VV
et al.
KCNJ11 activating mutation in an Indian family with remitting and relapsing diabetes.
Indian J Pediatr,
2010
May
, 77 (551-4).
370
Mohamadi A
et al.
Medical and developmental impact of transition from subcutaneous insulin to oral glyburide in a 15-yr-old boy with neonatal diabetes mellitus and intermediate DEND syndrome: extending the age of KCNJ11 mutation testing in neonatal DM.
Pediatr Diabetes,
2010
May
, 11 (203-7).
371
Bhave G
et al.
Small-molecule modulators of inward rectifier K+ channels: recent advances and future possibilities.
Future Med Chem,
2010
May
, 2 (757-74).
372
Lu M
et al.
Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
Proc. Natl. Acad. Sci. U.S.A.,
2010
Mar
30
, 107 (6082-7).
373
Summers KM
et al.
Mutations at KCNQ1 and an unknown locus cause long QT syndrome in a large Australian family: implications for genetic testing.
Am. J. Med. Genet. A,
2010
Mar
, 152A (613-21).
374
Bantel C
et al.
Noble gas xenon is a novel adenosine triphosphate-sensitive potassium channel opener.
Anesthesiology,
2010
Mar
, 112 (623-30).
375
Yu M
et al.
KCNJ11 Lys23Glu and TCF7L2 rs290487(C/T) polymorphisms affect therapeutic efficacy of repaglinide in Chinese patients with type 2 diabetes.
Clin. Pharmacol. Ther.,
2010
Mar
, 87 (330-5).
376
Lang F
et al.
Significance of SGK1 in the regulation of neuronal function.
,
2010
Jun
7
, ().
377
Njølstad PR
et al.
[Progress in diabetes genetics]
Tidsskr. Nor. Laegeforen.,
2010
Jun
3
, 130 (1145-9).
378
Kobayashi T
et al.
Inhibition of G-protein-activated inwardly rectifying K+ channels by the selective norepinephrine reuptake inhibitors atomoxetine and reboxetine.
Neuropsychopharmacology,
2010
Jun
, 35 (1560-9).
379
Wang ZJ
et al.
Decrease in dietary K intake stimulates the generation of superoxide anions in the kidney and inhibits K secretory channels in the CCD.
Am. J. Physiol. Renal Physiol.,
2010
Jun
, 298 (F1515-22).
380
Wambach JA
et al.
Successful sulfonylurea treatment of an insulin-naïve neonate with diabetes mellitus due to a KCNJ11 mutation.
Pediatr Diabetes,
2010
Jun
, 11 (286-8).
381
López-Izquierdo A
et al.
Thiopental inhibits function of different inward rectifying potassium channel isoforms by a similar mechanism.
Eur. J. Pharmacol.,
2010
Jul
25
, 638 (33-41).
382
Clark RH
et al.
Muscle dysfunction caused by a KATP channel mutation in neonatal diabetes is neuronal in origin.
Science,
2010
Jul
23
, 329 (458-61).
383
Ilamaran V
et al.
Persistent hyperinsulinemic hypoglycemia of infancy due to homozygous KCNJ11 (T294M) mutation.
Indian J Pediatr,
2010
Jul
, 77 (803-4).
384
Gupta V
et al.
A validation study of type 2 diabetes-related variants of the TCF7L2, HHEX, KCNJ11, and ADIPOQ genes in one endogamous ethnic group of north India.
Ann. Hum. Genet.,
2010
Jul
, 74 (361-8).
385
Carrisoza-Gaytán R
et al.
Potassium secretion by voltage-gated potassium channel Kv1.3 in the rat kidney.
Am. J. Physiol. Renal Physiol.,
2010
Jul
, 299 (F255-64).
386
Rosenhouse-Dantsker A
et al.
Comparative analysis of cholesterol sensitivity of Kir channels: Role of the CD loop.
Channels (Austin),
2010
Jan
20
, 4 ().
387
Okamoto K
et al.
Identification of KCNJ15 as a susceptibility gene in Asian patients with type 2 diabetes mellitus.
Am. J. Hum. Genet.,
2010
Jan
, 86 (54-64).
388
Glukhov AV
et al.
Differential K(ATP) channel pharmacology in intact mouse heart.
J. Mol. Cell. Cardiol.,
2010
Jan
, 48 (152-60).
389
Zhang H
et al.
Cardiac sarcolemmal K(ATP) channels: Latest twists in a questing tale!
J. Mol. Cell. Cardiol.,
2010
Jan
, 48 (71-5).
390
Heuser K
et al.
Variants of the genes encoding AQP4 and Kir4.1 are associated with subgroups of patients with temporal lobe epilepsy.
Epilepsy Res.,
2010
Jan
, 88 (55-64).
391
Serratrice G
et al.
[Potassium channelopathies and Morvan's syndromes].
Bull. Acad. Natl. Med.,
2010
Feb
, 194 (391-406; discussion 406-7).
392
Meyer TE
et al.
Diabetes genes and prostate cancer in the Atherosclerosis Risk in Communities study.
Cancer Epidemiol. Biomarkers Prev.,
2010
Feb
, 19 (558-65).
393
Shimomura K
et al.
The first clinical case of a mutation at residue K185 of Kir6.2 (KCNJ11): a major ATP-binding residue.
Diabet. Med.,
2010
Feb
, 27 (225-9).
394
van de Bunt M
et al.
From genetic association to molecular mechanism.
Curr. Diab. Rep.,
2010
Dec
, 10 (452-66).
395
Yang SS
et al.
Generation and analysis of the thiazide-sensitive Na+ -Cl- cotransporter (Ncc/Slc12a3) Ser707X knockin mouse as a model of Gitelman syndrome.
Hum. Mutat.,
2010
Dec
, 31 (1304-15).
396
Fang L
et al.
Hypertension resistance polymorphisms in ROMK (Kir1.1) alter channel function by different mechanisms.
Am. J. Physiol. Renal Physiol.,
2010
Dec
, 299 (F1359-64).
397
Yang L
et al.
Magnesium modulates ROMK channel-mediated potassium secretion.
J. Am. Soc. Nephrol.,
2010
Dec
, 21 (2109-16).
398
Williams DM
et al.
Molecular basis of decreased Kir4.1 function in SeSAME/EAST syndrome.
J. Am. Soc. Nephrol.,
2010
Dec
, 21 (2117-29).
399
Gupta V
et al.
Population structure of Aggarwals of north India as revealed by molecular markers.
Genet Test Mol Biomarkers,
2010
Dec
, 14 (781-5).
400
Frindt G
et al.
Effects of dietary K on cell-surface expression of renal ion channels and transporters.
,
2010
Aug
11
, ().
401
Reichold M
et al.
KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function.
Proc. Natl. Acad. Sci. U.S.A.,
2010
Aug
10
, 107 (14490-5).
402
Klupa T
et al.
The first case report of sulfonylurea use in a woman with permanent neonatal diabetes mellitus due to KCNJ11 mutation during a high-risk pregnancy.
J. Clin. Endocrinol. Metab.,
2010
Aug
, 95 (3599-604).
403
Zlatkovic-Lindor J
et al.
ATP-Sensitive K(+) Channel-Deficient Dilated Cardiomyopathy Proteome Remodeled by Embryonic Stem Cell Therapy.
Stem Cells,
2010
Aug
, 28 (1355-67).
404
Chauhan G
et al.
Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians.
Diabetes,
2010
Aug
, 59 (2068-74).
405
Flanagan SE
et al.
Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations.
Genet Test Mol Biomarkers,
2010
Aug
, 14 (533-7).
406
Kochar IP
et al.
Transient Neonatal Diabetes due to Kcnj11 Mutation.
Indian Pediatr,
2010
Apr
7
, 47 (359-60).
407
Paulson QX
et al.
Effects of body weight and alcohol consumption on insulin sensitivity.
Nutr J,
2010
, 9 (14).
408
Noczynska A
et al.
[Three-year observation of permanent neonatal diabetes]
Pediatr Endocrinol Diabetes Metab,
2010
, 16 (50-4).
409
Kim S
et al.
Changes in the sodium and potassium transporters in the course of chronic renal failure.
Nephron Physiol,
2010
, 115 (p31-41).
410
Kumaran A
et al.
Congenital hyperinsulinism due to a compound heterozygous ABCC8 mutation with spontaneous resolution at eight weeks.
Horm Res Paediatr,
2010
, 73 (287-92).
411
Raja M
et al.
Dissimilarity in the channel intrinsic stability among the bacterial KcsA and the inwardly rectifying potassium channel ROMK1.
Biochimie,
2009 Nov-Dec
, 91 (1426-33).
412
Fallen K
et al.
The Kir channel immunoglobulin domain is essential for Kir1.1 (ROMK) thermodynamic stability, trafficking and gating.
Channels (Austin),
2009 Jan-Feb
, 3 (57-68).
413
Yue P
et al.
Src family protein tyrosine kinase (PTK) modulates the effect of SGK1 and WNK4 on ROMK channels.
Proc. Natl. Acad. Sci. U.S.A.,
2009
Sep
1
, 106 (15061-6).
414
Lin CM
et al.
Chronic renal failure in a boy with classic Bartter's syndrome due to a novel mutation in CLCNKB coding for the chloride channel.
Eur. J. Pediatr.,
2009
Sep
, 168 (1129-33).
415
Lin DH
et al.
POSH stimulates the ubiquitination and the clathrin-independent endocytosis of ROMK1 channels.
J. Biol. Chem.,
2009
Oct
23
, 284 (29614-24).
416
Wang F
et al.
Effect of genetic variants in KCNJ11, ABCC8, PPARG and HNF4A loci on the susceptibility of type 2 diabetes in Chinese Han population.
Chin. Med. J.,
2009
Oct
20
, 122 (2477-82).
417
Reyes S
et al.
Targeted disruption of K(ATP) channels aggravates cardiac toxicity in cocaine abuse.
Clin Transl Sci,
2009
Oct
, 2 (361-5).
418
Welling PA
et al.
A comprehensive guide to the ROMK potassium channel: form and function in health and disease.
Am. J. Physiol. Renal Physiol.,
2009
Oct
, 297 (F849-63).
419
Hamming KS
et al.
Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K(+) channel.
Diabetes,
2009
Oct
, 58 (2419-24).
420
Dvoryanchikov G
et al.
Inward rectifier channel, ROMK, is localized to the apical tips of glial-like cells in mouse taste buds.
J. Comp. Neurol.,
2009
Nov
10
, 517 (spc1).
421
Dvoryanchikov G
et al.
Inward rectifier channel, ROMK, is localized to the apical tips of glial-like cells in mouse taste buds.
J. Comp. Neurol.,
2009
Nov
1
, 517 (1-14).
422
Fang L
et al.
The ARH adaptor protein regulates endocytosis of the ROMK potassium secretory channel in mouse kidney.
J. Clin. Invest.,
2009
Nov
, 119 (3278-89).
423
Lang F
et al.
Targeting SGK1 in diabetes.
Expert Opin. Ther. Targets,
2009
Nov
, 13 (1303-11).
424
Gach A
et al.
Neonatal diabetes in a child positive for islet cell antibodies at onset and Kir6.2 activating mutation.
Diabetes Res. Clin. Pract.,
2009
Nov
, 86 (e25-7).
425
Lewis LM
et al.
High-throughput screening reveals a small-molecule inhibitor of the renal outer medullary potassium channel and Kir7.1.
Mol. Pharmacol.,
2009
Nov
, 76 (1094-103).
426
Batra CM
et al.
Transient neonatal diabetes due to activating mutation in the ABCC8 gene encoding SUR1.
Indian J Pediatr,
2009
Nov
, 76 (1169-72).
427
Bockenhauer D
et al.
Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations.
N. Engl. J. Med.,
2009
May
7
, 360 (1960-70).
428
Liu Z
et al.
Regulation of ROMK channel and K+ homeostasis by kidney-specific WNK1 kinase.
J. Biol. Chem.,
2009
May
1
, 284 (12198-206).
429
Brochard K
et al.
Phenotype-genotype correlation in antenatal and neonatal variants of Bartter syndrome.
Nephrol. Dial. Transplant.,
2009
May
, 24 (1455-64).
430
Holstein A
et al.
The E23K variant of KCNJ11 and the risk for severe sulfonylurea-induced hypoglycemia in patients with type 2 diabetes.
Horm. Metab. Res.,
2009
May
, 41 (387-90).
431
Sandal T
et al.
The spectrum of ABCC8 mutations in Norwegian patients with congenital hyperinsulinism of infancy.
Clin. Genet.,
2009
May
, 75 (440-8).
432
James C
et al.
The genetic basis of congenital hyperinsulinism.
J. Med. Genet.,
2009
May
, 46 (289-99).
433
Yang T
et al.
Mutations of KCNJ10 together with mutations of SLC26A4 cause digenic nonsyndromic hearing loss associated with enlarged vestibular aqueduct syndrome.
Am. J. Hum. Genet.,
2009
May
, 84 (651-7).
434
Fujimoto W
et al.
Niflumic acid-sensitive ion channels play an important role in the induction of glucose-stimulated insulin secretion by cyclic AMP in mice.
Diabetologia,
2009
May
, 52 (863-72).
435
Fodstad H
et al.
Effects of mineralocorticoid and K+ concentration on K+ secretion and ROMK channel expression in a mouse cortical collecting duct cell line.
Am. J. Physiol. Renal Physiol.,
2009
May
, 296 (F966-75).
436
Wang WH
et al.
Regulation of potassium (K) handling in the renal collecting duct.
Pflugers Arch.,
2009
May
, 458 (157-68).
437
Winkler M
et al.
Analysis of two KCNJ11 neonatal diabetes mutations, V59G and V59A, and the analogous KCNJ8 I60G substitution: differences between the channel subtypes formed with SUR1.
J. Biol. Chem.,
2009
Mar
13
, 284 (6752-62).
438
Zou SB
et al.
Role of potassium channel gene Kcnj10 in ethanol preference in C57bl/6J and DBA/2J mice.
Alcohol. Clin. Exp. Res.,
2009
Mar
, 33 (394-9).
439
Cheng WW
et al.
KirBac1.1: it's an inward rectifying potassium channel.
J. Gen. Physiol.,
2009
Mar
, 133 (295-305).
440
Zlatkovic J
et al.
Proteomic profiling of KATP channel-deficient hypertensive heart maps risk for maladaptive cardiomyopathic outcome.
Proteomics,
2009
Mar
, 9 (1314-25).
441
Wagner VM
et al.
Transition from insulin to sulfonylurea in a child with diabetes due to a mutation in KCNJ11 encoding Kir6.2--initial and long-term response to sulfonylurea therapy.
Eur. J. Pediatr.,
2009
Mar
, 168 (359-61).
442
Chistiakov DA
et al.
Genetic variations in the pancreatic ATP-sensitive potassium channel, beta-cell dysfunction, and susceptibility to type 2 diabetes.
,
2009
Mar
, 46 (43-9).
443
Zaks-Makhina E
et al.
Specific and slow inhibition of the kir2.1 K+ channel by gambogic acid.
J. Biol. Chem.,
2009
Jun
5
, 284 (15432-8).
444
Lauridsen MH
et al.
[Diabetes in infants may be treated with sulfonylurea as a replacement for insulin]
Ugeskr. Laeg.,
2009
Jun
1
, 171 (1923-4).
445
Hartemann-Heurtier A
et al.
Mutations in the ABCC8 gene can cause autoantibody-negative insulin-dependent diabetes.
Diabetes Metab.,
2009
Jun
, 35 (233-5).
446
Delvecchio M
et al.
Sulfonylurea treatment in a girl with neonatal diabetes (KCNJ11 R201H) and celiac disease: impact of low compliance to the gluten free diet.
Diabetes Res. Clin. Pract.,
2009
Jun
, 84 (332-4).
447
Furutani K
et al.
Mutational and in silico analyses for antidepressant block of astroglial inward-rectifier Kir4.1 channel.
Mol. Pharmacol.,
2009
Jun
, 75 (1287-95).
448
Taneja TK
et al.
Sar1-GTPase-dependent ER exit of KATP channels revealed by a mutation causing congenital hyperinsulinism.
Hum. Mol. Genet.,
2009
Jul
1
, 18 (2400-13).
449
Zhou D
et al.
The E23K variation in the KCNJ11 gene is associated with type 2 diabetes in Chinese and East Asian population.
J. Hum. Genet.,
2009
Jul
, 54 (433-5).
450
Cha SK
et al.
Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho.
Mol. Pharmacol.,
2009
Jul
, 76 (38-46).
451
Craig TJ
et al.
An in-frame deletion in Kir6.2 (KCNJ11) causing neonatal diabetes reveals a site of interaction between Kir6.2 and SUR1.
J. Clin. Endocrinol. Metab.,
2009
Jul
, 94 (2551-7).
452
Nikolac N
et al.
Metabolic control in type 2 diabetes is associated with sulfonylurea receptor-1 (SUR-1) but not with KCNJ11 polymorphisms.
Arch. Med. Res.,
2009
Jul
, 40 (387-92).
453
Takeuchi F
et al.
Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population.
Diabetes,
2009
Jul
, 58 (1690-9).
454
Rodan AR
et al.
Distal potassium handling based on flow modulation of maxi-K channel activity.
Curr. Opin. Nephrol. Hypertens.,
2009
Jul
, 18 (350-5).
455
Xiao X
et al.
Transfer from insulin to sulfonylurea treatment in a chinese patient with permanent neonatal diabetes mellitus due to a KCNJ11 R201H mutation.
Horm. Metab. Res.,
2009
Jul
, 41 (580-2).
456
Ting WH
et al.
Improved diabetic control during oral sulfonylurea treatment in two children with permanent neonatal diabetes mellitus.
J. Pediatr. Endocrinol. Metab.,
2009
Jul
, 22 (661-7).
457
Pawelczyk M
et al.
Analysis of gene polymorphisms associated with K ion circulation in the inner ear of patients susceptible and resistant to noise-induced hearing loss.
Ann. Hum. Genet.,
2009
Jul
, 73 (411-21).
458
Mustapha M
et al.
Deafness and permanently reduced potassium channel gene expression and function in hypothyroid Pit1dw mutants.
J. Neurosci.,
2009
Jan
28
, 29 (1212-23).
459
Nelson TJ
et al.
KCNJ11 knockout morula re-engineered by stem cell diploid aggregation.
Philos. Trans. R. Soc. Lond., B, Biol. Sci.,
2009
Jan
27
, 364 (269-76).
460
Schild-Hay LJ
et al.
Tamoxifen induces expression of immune response-related genes in cultured normal human mammary epithelial cells.
Cancer Res.,
2009
Feb
1
, 69 (1150-5).
461
Kapoor RR
et al.
Advances in the diagnosis and management of hyperinsulinemic hypoglycemia.
,
2009
Feb
, 5 (101-12).
462
Tabara Y
et al.
Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening.
Diabetes,
2009
Feb
, 58 (493-8).
463
Frindt G
et al.
Dietary K regulates ROMK channels in connecting tubule and cortical collecting duct of rat kidney.
Am. J. Physiol. Renal Physiol.,
2009
Feb
, 296 (F347-54).
464
Kobayashi T
et al.
Inhibitory effects of the antiepileptic drug ethosuximide on G protein-activated inwardly rectifying K+ channels.
Neuropharmacology,
2009
Feb
, 56 (499-506).
465
Flanagan SE
et al.
Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism.
Hum. Mutat.,
2009
Feb
, 30 (170-80).
466
Stechman MJ
et al.
Genetic causes of hypercalciuric nephrolithiasis.
Pediatr. Nephrol.,
2009
Dec
, 24 (2321-32).
467
Reyes S
et al.
KATP channel Kir6.2 E23K variant overrepresented in human heart failure is associated with impaired exercise stress response.
Hum. Genet.,
2009
Dec
, 126 (779-89).
468
Valamparampil JJ
et al.
Clinical profile and etiology of diabetes mellitus with onset at less than 6 months of age.
Kaohsiung J. Med. Sci.,
2009
Dec
, 25 (656-62).
469
Shi M
et al.
The EAST syndrome and KCNJ10 mutations.
N. Engl. J. Med.,
2009
Aug
6
, 361 (630; author reply 630-1).
470
Sackin H
et al.
An intersubunit salt bridge near the selectivity filter stabilizes the active state of Kir1.1.
Biophys. J.,
2009
Aug
19
, 97 (1058-66).
471
Yoshida T
et al.
Association of genetic variants with chronic kidney disease in individuals with different lipid profiles.
Int. J. Mol. Med.,
2009
Aug
, 24 (233-46).
472
Kumaraguru J
et al.
Tooth discoloration in patients with neonatal diabetes after transfer onto glibenclamide: a previously unreported side effect.
Diabetes Care,
2009
Aug
, 32 (1428-30).
473
Scholl UI
et al.
Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10.
Proc. Natl. Acad. Sci. U.S.A.,
2009
Apr
7
, 106 (5842-7).
474
Demontis GC
et al.
Selective Hcn1 channels inhibition by ivabradine in mouse rod photoreceptors.
Invest. Ophthalmol. Vis. Sci.,
2009
Apr
, 50 (1948-55).
475
Judge SI
et al.
Patents related to therapeutic activation of K(ATP) and K(2P) potassium channels for neuroprotection: ischemic/hypoxic/anoxic injury and general anesthetics.
Expert Opin Ther Pat,
2009
Apr
, 19 (433-60).
476
Ruete MC
et al.
Altered renal expression of Na(+) transporters and ROMK in protein-deprived rats.
Nephron Physiol,
2009
, 111 (p17-29).
477
Kobayashi T
et al.
Pregnenolone sulfate potentiates the inwardly rectifying K channel Kir2.3.
PLoS ONE,
2009
, 4 (e6311).
478
Lee JR
et al.
Structural changes in the cytoplasmic pore of the Kir1.1 channel during pHi-gating probed by FRET.
J. Biomed. Sci.,
2009
, 16 (29).
479
Boulpaep E
Protein-protein interactions among ion channels regulate ion transport in the kidney.
Bull. Mem. Acad. R. Med. Belg.,
2009
, 164 (133-41; discussion 141-2).
480
Thorsby PM
et al.
Comparison of genetic risk in three candidate genes (TCF7L2, PPARG, KCNJ11) with traditional risk factors for type 2 diabetes in a population-based study--the HUNT study.
Scand. J. Clin. Lab. Invest.,
2009
, 69 (282-7).
481
Hu C
et al.
PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population.
PLoS ONE,
2009
, 4 (e7643).
482
Christopoulos P
et al.
Genetic variants in TCF7L2 and KCNJ11 genes in a Greek population with polycystic ovary syndrome.
Gynecol. Endocrinol.,
2008
Sep
, 24 (486-90).
483
Begum-Hasan J
et al.
Familial permanent neonatal diabetes with KCNJ11 mutation and the response to glyburide therapy--a three-year follow-up.
J. Pediatr. Endocrinol. Metab.,
2008
Sep
, 21 (895-903).
484
Sun QF
et al.
Differential gene expression profiles of normal human parotid and submandibular glands.
,
2008
Sep
, 14 (500-9).
485
Staník J
et al.
Coincidence of a novel KCNJ11 missense variant R365H with a paternally inherited 6q24 duplication in a patient with transient neonatal diabetes.
Diabetes Care,
2008
Sep
, 31 (1736-7).
486
Yan Q
et al.
Female ROMK null mice manifest more severe Bartter II phenotype on renal function and higher PGE2 production.
Am. J. Physiol. Regul. Integr. Comp. Physiol.,
2008
Sep
, 295 (R997-R1004).
487
Yang D
et al.
Expression of inwardly rectifying potassium channel subunits in native human retinal pigment epithelium.
Exp. Eye Res.,
2008
Sep
, 87 (176-83).
488
Murthy M
et al.
The acidic motif of WNK4 is crucial for its interaction with the K channel ROMK.
Biochem. Biophys. Res. Commun.,
2008
Oct
31
, 375 (651-4).
489
Støy J
et al.
Diagnosis and treatment of neonatal diabetes: a United States experience.
,
2008
Oct
, 9 (450-9).
490
Lee CH
et al.
Functional and structural characterization of PKA-mediated pHi gating of ROMK1 channels.
J. Mol. Graph. Model.,
2008
Oct
, 27 (332-41).
491
Herder C
et al.
Variants of the PPARG, IGF2BP2, CDKAL1, HHEX, and TCF7L2 genes confer risk of type 2 diabetes independently of BMI in the German KORA studies.
Horm. Metab. Res.,
2008
Oct
, 40 (722-6).
492
Feng Y
et al.
Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients.
Diabetes Care,
2008
Oct
, 31 (1939-44).
493
Koster JC
et al.
DEND mutation in Kir6.2 (KCNJ11) reveals a flexible N-terminal region critical for ATP-sensing of the KATP channel.
Biophys. J.,
2008
Nov
15
, 95 (4689-97).
494
Klose A
et al.
1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122) selectively inhibits Kir3 and BK channels in a phospholipase C-independent fashion.
Mol. Pharmacol.,
2008
Nov
, 74 (1203-14).
495
Zhang W
et al.
WNK3 positively regulates epithelial calcium channels TRPV5 and TRPV6 via a kinase-dependent pathway.
Am. J. Physiol. Renal Physiol.,
2008
Nov
, 295 (F1472-84).
496
Della Manna T
et al.
Glibenclamide unresponsiveness in a Brazilian child with permanent neonatal diabetes mellitus and DEND syndrome due to a C166Y mutation in KCNJ11 (Kir6.2) gene.
Arq Bras Endocrinol Metabol,
2008
Nov
, 52 (1350-5).
497
Gaulton KJ
et al.
Comprehensive association study of type 2 diabetes and related quantitative traits with 222 candidate genes.
Diabetes,
2008
Nov
, 57 (3136-44).
498
Ji W
et al.
Rare independent mutations in renal salt handling genes contribute to blood pressure variation.
Nat. Genet.,
2008
May
, 40 (592-9).
499
Lee CH
et al.
Gabapentin activates ROMK1 channels by a protein kinase A (PKA)-dependent mechanism.
Br. J. Pharmacol.,
2008
May
, 154 (216-25).
500
Arbizu Lostao J
et al.
[18F-fluoro-L-DOPA PET-CT imaging combined with genetic analysis for optimal classification and treatment in a child with severe congenital hyperinsulinism]
,
2008
May
, 68 (481-5).
501
Sonalker PA
et al.
Chronic noradrenaline increases renal expression of NHE-3, NBC-1, BSC-1 and aquaporin-2.
Clin. Exp. Pharmacol. Physiol.,
2008
May
, 35 (594-600).
502
Lin D
et al.
Expression of tetraspan protein CD63 activates protein-tyrosine kinase (PTK) and enhances the PTK-induced inhibition of ROMK channels.
J. Biol. Chem.,
2008
Mar
21
, 283 (7674-81).
503
Slingerland AS
et al.
Sulphonylurea therapy improves cognition in a patient with the V59M KCNJ11 mutation.
Diabet. Med.,
2008
Mar
, 25 (277-81).
505
Koster JC
et al.
The G53D mutation in Kir6.2 (KCNJ11) is associated with neonatal diabetes and motor dysfunction in adulthood that is improved with sulfonylurea therapy.
J. Clin. Endocrinol. Metab.,
2008
Mar
, 93 (1054-61).
506
Omori S
et al.
Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population.
Diabetes,
2008
Mar
, 57 (791-5).
507
Zhang Y
et al.
K restriction inhibits protein phosphatase 2B (PP2B) and suppression of PP2B decreases ROMK channel activity in the CCD.
Am. J. Physiol., Cell Physiol.,
2008
Mar
, 294 (C765-73).
508
Yamamoto Y
et al.
Immunohistochemical distribution of inwardly rectifying K+ channels in the medulla oblongata of the rat.
J. Vet. Med. Sci.,
2008
Mar
, 70 (265-71).
509
Klein KM
et al.
Evaluation of susceptibility loci in an extended pedigree with idiopathic generalized epilepsy.
,
2008
Mar
, 10 (13-8).
510
Smith SB
et al.
Quantitative trait locus and computational mapping identifies Kcnj9 (GIRK3) as a candidate gene affecting analgesia from multiple drug classes.
Pharmacogenet. Genomics,
2008
Mar
, 18 (231-41).
511
Tobin MD
et al.
Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population.
Hypertension,
2008
Jun
, 51 (1658-64).
512
Wagner CA
et al.
Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins.
Am. J. Physiol. Renal Physiol.,
2008
Jun
, 294 (F1373-80).
513
D'Amato E
et al.
Variable phenotypic spectrum of diabetes mellitus in a family carrying a novel KCNJ11 gene mutation.
Diabet. Med.,
2008
Jun
, 25 (651-6).
514
Orío Hernández M
et al.
[Neonatal diabetes mellitus and KCNJ11 gene mutation: report of a family case]
,
2008
Jun
, 68 (602-4).
515
Cantone A
et al.
Mouse model of type II Bartter's syndrome. I. Upregulation of thiazide-sensitive Na-Cl cotransport activity.
Am. J. Physiol. Renal Physiol.,
2008
Jun
, 294 (F1366-72).
516
Bremer AA
et al.
Outpatient transition of an infant with permanent neonatal diabetes due to a KCNJ11 activating mutation from subcutaneous insulin to oral glyburide.
,
2008
Jun
, 9 (236-9).
517
Wan J
et al.
Study of Kir6.2/KCNJ11 gene in a sudden cardiac death pedigree.
Mol. Biol. Rep.,
2008
Jun
, 35 (119-23).
518
Lee CH
et al.
PKA-mediated phosphorylation is a novel mechanism for levetiracetam, an antiepileptic drug, activating ROMK1 channels.
Biochem. Pharmacol.,
2008
Jul
15
, 76 (225-35).
519
Troncoso Brindeiro CM
et al.
Potassium channel contributions to afferent arteriolar tone in normal and diabetic rat kidney.
Am. J. Physiol. Renal Physiol.,
2008
Jul
, 295 (F171-8).
520
Lee CH
et al.
d-Amphetamine inhibits inwardly rectifying potassium channels in Xenopus oocytes expression system.
Neurotoxicology,
2008
Jul
, 29 (638-46).
521
de Wet H
et al.
A mutation (R826W) in nucleotide-binding domain 1 of ABCC8 reduces ATPase activity and causes transient neonatal diabetes.
EMBO Rep.,
2008
Jul
, 9 (648-54).
522
Yamamoto Y
et al.
Expression of inwardly rectifying K+ channels in the carotid body of rat.
Histol. Histopathol.,
2008
Jul
, 23 (799-806).
523
Abdulhadi-Atwan M
et al.
Novel de novo mutation in sulfonylurea receptor 1 presenting as hyperinsulinism in infancy followed by overt diabetes in early adolescence.
Diabetes,
2008
Jul
, 57 (1935-40).
524
Bennett AJ
et al.
No evidence that established type 2 diabetes susceptibility variants in the PPARG and KCNJ11 genes have pleiotropic effects on early growth.
Diabetologia,
2008
Jan
, 51 (82-5).
525
Fischer A
et al.
KCNJ11 E23K affects diabetes risk and is associated with the disposition index: results of two independent German cohorts.
Diabetes Care,
2008
Jan
, 31 (87-9).
526
Yi Y
et al.
Association between KCNJ11 E23K genotype and cardiovascular and glucose metabolism phenotypes in older men and women.
Exp. Physiol.,
2008
Jan
, 93 (95-103).
527
Shield JP
et al.
Mosaic paternal uniparental isodisomy and an ABCC8 gene mutation in a patient with permanent neonatal diabetes and hemihypertrophy.
Diabetes,
2008
Jan
, 57 (255-8).
528
Hussain K
et al.
An ABCC8 gene mutation and mosaic uniparental isodisomy resulting in atypical diffuse congenital hyperinsulinism.
Diabetes,
2008
Jan
, 57 (259-63).
529
Singh R
et al.
Free radical stress-mediated loss of Kcnj10 protein expression in stria vascularis contributes to deafness in Pendred syndrome mouse model.
Am. J. Physiol. Renal Physiol.,
2008
Jan
, 294 (F139-48).
530
Hejtmancik JF
et al.
Mutations in KCNJ13 cause autosomal-dominant snowflake vitreoretinal degeneration.
Am. J. Hum. Genet.,
2008
Jan
, 82 (174-80).
531
Jin Z
et al.
Spatiotemporal loss of K+ transport proteins in the developing cochlear lateral wall of guinea pigs with hereditary deafness.
Eur. J. Neurosci.,
2008
Jan
, 27 (145-54).
532
Zitron E
et al.
Kir2.x inward rectifier potassium channels are differentially regulated by adrenergic alpha1A receptors.
J. Mol. Cell. Cardiol.,
2008
Jan
, 44 (84-94).
533
Yang D
et al.
Expression of Kir7.1 and a novel Kir7.1 splice variant in native human retinal pigment epithelium.
Exp. Eye Res.,
2008
Jan
, 86 (81-91).
534
Flechtner I
et al.
Neonatal hyperglycaemia and abnormal development of the pancreas.
Best Pract. Res. Clin. Endocrinol. Metab.,
2008
Feb
, 22 (17-40).
535
Hsieh SC
et al.
Abnormal in vitro CXCR2 modulation and defective cationic ion transporter expression on polymorphonuclear neutrophils responsible for hyporesponsiveness to IL-8 stimulation in patients with active systemic lupus erythematosus.
Rheumatology (Oxford),
2008
Feb
, 47 (150-7).
536
Alsmadi O
et al.
Genetic study of Saudi diabetes (GSSD): significant association of the KCNJ11 E23K polymorphism with type 2 diabetes.
Diabetes Metab. Res. Rev.,
2008
Feb
, 24 (137-40).
537
Ranjith N
et al.
Genetic variants associated with insulin resistance and metabolic syndrome in young Asian Indians with myocardial infarction.
,
2008
Fall
, 6 (209-14).
538
Flagg TP
et al.
Differential structure of atrial and ventricular KATP: atrial KATP channels require SUR1.
Circ. Res.,
2008
Dec
5
, 103 (1458-65).
539
Robertson JL
et al.
Long-pore electrostatics in inward-rectifier potassium channels.
J. Gen. Physiol.,
2008
Dec
, 132 (613-32).
540
Spector DA
et al.
The ROMK potassium channel is present in mammalian urinary tract epithelia and muscle.
Am. J. Physiol. Renal Physiol.,
2008
Dec
, 295 (F1658-65).
541
Damaj L
et al.
Chromosome 11p15 paternal isodisomy in focal forms of neonatal hyperinsulinism.
J. Clin. Endocrinol. Metab.,
2008
Dec
, 93 (4941-7).
542
Lybaert P
et al.
KATP channel subunits are expressed in the epididymal epithelium in several mammalian species.
Biol. Reprod.,
2008
Aug
, 79 (253-61).
543
He YY
et al.
Association of KCNJ11 and ABCC8 genetic polymorphisms with response to repaglinide in Chinese diabetic patients.
Acta Pharmacol. Sin.,
2008
Aug
, 29 (983-9).
544
Pinney SE
et al.
Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant KATP channel mutations.
J. Clin. Invest.,
2008
Aug
, 118 (2877-86).
545
Wang HR
et al.
Domains of WNK1 kinase in the regulation of ROMK1.
Am. J. Physiol. Renal Physiol.,
2008
Aug
, 295 (F438-45).
546
Lin YW
et al.
Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism.
J. Biol. Chem.,
2008
Apr
4
, 283 (9146-56).
547
548
Flanagan SE
et al.
Identification of mutations in the Kir6.2 subunit of the K(ATP) channel.
Methods Mol. Biol.,
2008
, 491 (235-45).
549
Shah JH
et al.
Alanine in HI: a silent mutation cries out!
Adv. Exp. Med. Biol.,
2008
, 614 (145-50).
550
Gach A
et al.
[Permanent neonatal diabetes with known genetic background: oral drugs in treatment of childhood diabetes]
,
2008
, 14 (45-9).
551
Zmysłowska A
et al.
[The rare syndromic forms of monogenic diabetes in childhood]
,
2008
, 14 (41-3).
552
Abreu N
et al.
Hemodynamic parameters during normal and hypertensive pregnancy in rats: evaluation of renal salt and water transporters.
Hypertens Pregnancy,
2008
, 27 (49-63).
553
Papadopoulos N
et al.
Possible roles of the weakly inward rectifying k+ channel Kir4.1 (KCNJ10) in the pre-Bötzinger complex.
Adv. Exp. Med. Biol.,
2008
, 605 (109-13).
554
Zou J
et al.
Progressive hearing loss in mice with a mutated vitamin D receptor gene.
Audiol. Neurootol.,
2008
, 13 (219-30).
555
Nanazashvili M
et al.
Moving the pH gate of the Kir1.1 inward rectifier channel.
Channels (Austin),
2007 Jan-Feb
, 1 (21-8).
556
Greer RM
et al.
Genotype-phenotype associations in patients with severe hyperinsulinism of infancy.
Pediatr. Dev. Pathol.,
2007 Jan-Feb
, 10 (25-34).
557
Shimomura K
et al.
A novel mutation causing DEND syndrome: a treatable channelopathy of pancreas and brain.
Neurology,
2007
Sep
25
, 69 (1342-9).
558
Parton LE
et al.
Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity.
Nature,
2007
Sep
13
, 449 (228-32).
559
Lucarini N
et al.
Genetic polymorphisms and idiopathic generalized epilepsies.
Pediatr. Neurol.,
2007
Sep
, 37 (157-64).
560
Rieg T
et al.
The role of the BK channel in potassium homeostasis and flow-induced renal potassium excretion.
Kidney Int.,
2007
Sep
, 72 (566-73).
562
Grimm PR
et al.
BK channels in the kidney.
Curr. Opin. Nephrol. Hypertens.,
2007
Sep
, 16 (430-6).
563
Yan FF
et al.
Congenital hyperinsulinism associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels: identification and rescue.
Diabetes,
2007
Sep
, 56 (2339-48).
564
Härtel K
et al.
Calcium influx mediated by the inwardly rectifying K+ channel Kir4.1 (KCNJ10) at low external K+ concentration.
Cell Calcium,
2007
Sep
, 42 (271-80).
565
Ohno Y
et al.
Inhibition of astroglial Kir4.1 channels by selective serotonin reuptake inhibitors.
Brain Res.,
2007
Oct
31
, 1178 (44-51).
566
Fenton RA
et al.
Mouse models and the urinary concentrating mechanism in the new millennium.
Physiol. Rev.,
2007
Oct
, 87 (1083-112).
567
Letha S
et al.
Permanent neonatal diabetes due to KCNJ11 gene mutation.
,
2007
Oct
, 74 (947-9).
568
Sumnik Z
et al.
Sulphonylurea treatment does not improve psychomotor development in children with KCNJ11 mutations causing permanent neonatal diabetes mellitus accompanied by developmental delay and epilepsy (DEND syndrome).
Diabet. Med.,
2007
Oct
, 24 (1176-8).
569
Däublin G
et al.
Early glibenclamide treatment in a clinical newborn with KCNJ11 gene mutation.
Diabetes Care,
2007
Oct
, 30 (e104).
570
Jin Y
et al.
PGE2 inhibits apical K channels in the CCD through activation of the MAPK pathway.
Am. J. Physiol. Renal Physiol.,
2007
Oct
, 293 (F1299-307).
571
Eng B
et al.
Characterization of a long-term rat mTAL cell line.
Am. J. Physiol. Renal Physiol.,
2007
Oct
, 293 (F1413-22).
572
Lang F
et al.
Functional significance of channels and transporters expressed in the inner ear and kidney.
Am. J. Physiol., Cell Physiol.,
2007
Oct
, 293 (C1187-208).
573
Suzuki S
et al.
Molecular basis of neonatal diabetes in Japanese patients.
J. Clin. Endocrinol. Metab.,
2007
Oct
, 92 (3979-85).
574
de Wet H
et al.
Increased ATPase activity produced by mutations at arginine-1380 in nucleotide-binding domain 2 of ABCC8 causes neonatal diabetes.
Proc. Natl. Acad. Sci. U.S.A.,
2007
Nov
27
, 104 (18988-92).
575
Mlynarski W
et al.
Sulfonylurea improves CNS function in a case of intermediate DEND syndrome caused by a mutation in KCNJ11.
,
2007
Nov
, 3 (640-5).
576
Flechtner I
et al.
[Neonatal diabetes: a disease linked to multiple mechanisms]
,
2007
Nov
, 14 (1356-65).
577
Nichols CG
et al.
beta-cell hyperexcitability: from hyperinsulinism to diabetes.
,
2007
Nov
, 9 Suppl 2 (81-8).
578
Tarasov AI
et al.
Functional analysis of two Kir6.2 (KCNJ11) mutations, K170T and E322K, causing neonatal diabetes.
,
2007
Nov
, 9 Suppl 2 (46-55).
579
580
Gurgel LC
et al.
Sulfonylrea treatment in permanent neonatal diabetes due to G53D mutation in the KCNJ11 gene: improvement in glycemic control and neurological function.
Diabetes Care,
2007
Nov
, 30 (e108).
581
Qi L
et al.
Gene-gene interactions between HNF4A and KCNJ11 in predicting Type 2 diabetes in women.
Diabet. Med.,
2007
Nov
, 24 (1187-91).
582
Zhang X
et al.
Inhibitor of growth 4 (ING4) is up-regulated by a low K intake and suppresses renal outer medullary K channels (ROMK) by MAPK stimulation.
Proc. Natl. Acad. Sci. U.S.A.,
2007
May
29
, 104 (9517-22).
583
Yang SS
et al.
Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4(D561A/+) knockin mouse model.
Cell Metab.,
2007
May
, 5 (331-44).
584
Lettre G
et al.
Genetic model testing and statistical power in population-based association studies of quantitative traits.
Genet. Epidemiol.,
2007
May
, 31 (358-62).
585
Richardson CC
et al.
Low levels of glucose transporters and K+ATP channels in human pancreatic beta cells early in development.
Diabetologia,
2007
May
, 50 (1000-5).
586
Edghill EL
et al.
Origin of de novo KCNJ11 mutations and risk of neonatal diabetes for subsequent siblings.
J. Clin. Endocrinol. Metab.,
2007
May
, 92 (1773-7).
587
Landau Z
et al.
Sulfonylurea-responsive diabetes in childhood.
J. Pediatr.,
2007
May
, 150 (553-5).
588
Wangemann P
et al.
Loss of cochlear HCO3- secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model.
Am. J. Physiol. Renal Physiol.,
2007
May
, 292 (F1345-53).
589
Ring AM
et al.
An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis.
Proc. Natl. Acad. Sci. U.S.A.,
2007
Mar
6
, 104 (4025-9).
590
Haider S
et al.
Molecular dynamics simulations of inwardly rectifying (Kir) potassium channels: a comparative study.
Biochemistry,
2007
Mar
27
, 46 (3643-52).
591
Wei Y
et al.
Angiotensin II inhibits the ROMK-like small conductance K channel in renal cortical collecting duct during dietary potassium restriction.
J. Biol. Chem.,
2007
Mar
2
, 282 (6455-62).
592
Huang C
et al.
Interaction of the Ca2+-sensing receptor with the inwardly rectifying potassium channels Kir4.1 and Kir4.2 results in inhibition of channel function.
Am. J. Physiol. Renal Physiol.,
2007
Mar
, 292 (F1073-81).
593
Friedland DR
et al.
Potassium channel gene expression in the rat cochlear nucleus.
Hear. Res.,
2007
Jun
, 228 (31-43).
594
Barber TM
et al.
Relationship between E23K (an established type II diabetes-susceptibility variant within KCNJ11), polycystic ovary syndrome and androgen levels.
Eur. J. Hum. Genet.,
2007
Jun
, 15 (679-84).
595
Kobayashi T
et al.
Inhibition by cocaine of G protein-activated inwardly rectifying K+ channels expressed in Xenopus oocytes.
Toxicol In Vitro,
2007
Jun
, 21 (656-64).
596
Sackin H
et al.
External K activation of Kir1.1 depends on the pH gate.
Biophys. J.,
2007
Jul
15
, 93 (L14-6).
597
Flanagan SE
et al.
Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood.
Diabetes,
2007
Jul
, 56 (1930-7).
598
Muzyamba M
et al.
Complex ABCC8 DNA variations in congenital hyperinsulinism: lessons from functional studies.
Clin. Endocrinol. (Oxf),
2007
Jul
, 67 (115-24).
599
Rica I
et al.
The majority of cases of neonatal diabetes in Spain can be explained by known genetic abnormalities.
Diabet. Med.,
2007
Jul
, 24 (707-13).
600
Scherer D
et al.
Activation of inwardly rectifying Kir2.x potassium channels by beta 3-adrenoceptors is mediated via different signaling pathways with a predominant role of PKC for Kir2.1 and of PKA for Kir2.2.
Naunyn Schmiedebergs Arch. Pharmacol.,
2007
Jul
, 375 (311-22).
601
Babilonia E
et al.
Role of gp91phox -containing NADPH oxidase in mediating the effect of K restriction on ROMK channels and renal K excretion.
J. Am. Soc. Nephrol.,
2007
Jul
, 18 (2037-45).
602
Girirajan S
et al.
17p11.2p12 triplication and del(17)q11.2q12 in a severely affected child with dup(17)p11.2p12 syndrome.
Clin. Genet.,
2007
Jul
, 72 (47-58).
603
Malecki MT
et al.
Transfer to sulphonylurea therapy in adult subjects with permanent neonatal diabetes due to KCNJ11-activating [corrected] mutations: evidence for improvement in insulin sensitivity.
Diabetes Care,
2007
Jan
, 30 (147-9).
604
Domenighetti AA
et al.
Chronic angiotensin II stimulation in the heart produces an acquired long QT syndrome associated with IK1 potassium current downregulation.
J. Mol. Cell. Cardiol.,
2007
Jan
, 42 (63-70).
605
Chang HK
et al.
Charges in the cytoplasmic pore control intrinsic inward rectification and single-channel properties in Kir1.1 and Kir2.1 channels.
J. Membr. Biol.,
2007
Feb
, 215 (181-93).
606
Bryan J
et al.
ABCC8 and ABCC9: ABC transporters that regulate K+ channels.
Pflugers Arch.,
2007
Feb
, 453 (703-18).
607
Florez JC
et al.
Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program.
Diabetes,
2007
Feb
, 56 (531-6).
608
Masia R
et al.
An ATP-binding mutation (G334D) in KCNJ11 is associated with a sulfonylurea-insensitive form of developmental delay, epilepsy, and neonatal diabetes.
Diabetes,
2007
Feb
, 56 (328-36).
609
Koo BK
et al.
Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with Type 2 diabetes and hypertension in the Korean population.
Diabet. Med.,
2007
Feb
, 24 (178-86).
610
Wabitsch M
et al.
Heterogeneity in disease severity in a family with a novel G68V GCK activating mutation causing persistent hyperinsulinaemic hypoglycaemia of infancy.
Diabet. Med.,
2007
Dec
, 24 (1393-9).
611
Dai AI
et al.
Idiopathic epilepsy of childhood and potassium ion channels.
,
2007
Aug
, 57 (415-8).
612
Kim MS
et al.
Sulfonylurea therapy in two Korean patients with insulin-treated neonatal diabetes due to heterozygous mutations of the KCNJ11 gene encoding Kir6.2.
J. Korean Med. Sci.,
2007
Aug
, 22 (616-20).
613
Nozu K
et al.
A novel mutation in KCNJ1 in a Bartter syndrome case diagnosed as pseudohypoaldosteronism.
Pediatr. Nephrol.,
2007
Aug
, 22 (1219-23).
614
Biagiotti L
et al.
Identification of two novel frameshift mutations in the KCNJ11 gene in two Italian patients affected by Congenital Hyperinsulinism of Infancy.
Exp. Mol. Pathol.,
2007
Aug
, 83 (59-64).
615
Ellard S
et al.
Permanent neonatal diabetes caused by dominant, recessive, or compound heterozygous SUR1 mutations with opposite functional effects.
Am. J. Hum. Genet.,
2007
Aug
, 81 (375-82).
616
Gach A
et al.
Islet-specific antibody seroconversion in patients with long duration of permanent neonatal diabetes caused by mutations in the KCNJ11 gene.
Diabetes Care,
2007
Aug
, 30 (2080-2).
617
Chan YM
et al.
Transition from insulin to glyburide in a 4-month-old girl with neonatal diabetes mellitus caused by a mutation in KCNJ11.
,
2007
Aug
, 8 (235-8).
618
He G
et al.
Intersectin links WNK kinases to endocytosis of ROMK1.
J. Clin. Invest.,
2007
Apr
, 117 (1078-87).
619
Staník J
et al.
Prevalence of permanent neonatal diabetes in Slovakia and successful replacement of insulin with sulfonylurea therapy in KCNJ11 and ABCC8 mutation carriers.
J. Clin. Endocrinol. Metab.,
2007
Apr
, 92 (1276-82).
620
Wei Y
et al.
Effect of hydrogen peroxide on ROMK channels in the cortical collecting duct.
Am. J. Physiol. Renal Physiol.,
2007
Apr
, 292 (F1151-6).
621
Gumina RJ
et al.
KATP channel knockout worsens myocardial calcium stress load in vivo and impairs recovery in stunned heart.
Am. J. Physiol. Heart Circ. Physiol.,
2007
Apr
, 292 (H1706-13).
622
Christesen HB
et al.
Rapid genetic analysis in congenital hyperinsulinism.
Horm. Res.,
2007
, 67 (184-8).
623
Smith AJ
et al.
Molecular cell biology of KATP channels: implications for neonatal diabetes.
,
2007
, 9 (1-17).
624
Polak M
et al.
Neonatal diabetes mellitus: a disease linked to multiple mechanisms.
,
2007
, 2 (12).
625
Jans F
et al.
Investigation of the Ba2+-sensitive NH4+ transport pathways in the apical cell membrane of primary cultured rabbit MTAL cells.
Nephron Physiol,
2007
, 106 (p45-53).
626
Klupa T
et al.
[Glycemic index of meals and postprandial glycemia in patients with permanent neonatal diabetes due to Kir6.2 gene mutations]
Prz. Lek.,
2007
, 64 (398-400).
627
Sakamoto Y
et al.
SNPs in the KCNJ11-ABCC8 gene locus are associated with type 2 diabetes and blood pressure levels in the Japanese population.
J. Hum. Genet.,
2007
, 52 (781-93).
629
Wultsch T
et al.
Behavioural and expressional phenotyping of nitric oxide synthase-I knockdown animals.
J. Neural Transm. Suppl.,
2007
, (69-85).
630
Flechtner I
et al.
Diabetes in very young children and mutations in the insulin-secreting cell potassium channel genes: therapeutic consequences.
,
2007
, 12 (86-98).
631
Cejková P
et al.
KCNJ11 E23K polymorphism and diabetes mellitus with adult onset in Czech patients.
Folia Biol. (Praha),
2007
, 53 (173-5).
632
Shah JH
et al.
The role of ATP sensitive channels in insulin secretion and the implications in persistent hyperinsulinemic hypoglycaemia of infancy (PHHI).
Adv. Exp. Med. Biol.,
2007
, 599 (133-8).
633
Deng XL
et al.
Properties of ion channels in rabbit mesenchymal stem cells from bone marrow.
Biochem. Biophys. Res. Commun.,
2006
Sep
15
, 348 (301-9).
634
Tonini G
et al.
Sulfonylurea treatment outweighs insulin therapy in short-term metabolic control of patients with permanent neonatal diabetes mellitus due to activating mutations of the KCNJ11 (KIR6.2) gene.
Diabetologia,
2006
Sep
, 49 (2210-3).
635
Sassen MC
et al.
Dysregulation of renal sodium transporters in gentamicin-treated rats.
Kidney Int.,
2006
Sep
, 70 (1026-37).
636
Pluznick JL
et al.
BK channels in the kidney: role in K(+) secretion and localization of molecular components.
Am. J. Physiol. Renal Physiol.,
2006
Sep
, 291 (F517-29).
637
Zhang YY
et al.
Localization of the pH gate in Kir1.1 channels.
Biophys. J.,
2006
Oct
15
, 91 (2901-9).
638
Weedon MN
et al.
Combining information from common type 2 diabetes risk polymorphisms improves disease prediction.
PLoS Med.,
2006
Oct
, 3 (e374).
639
Lang F
et al.
(Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms.
Physiol. Rev.,
2006
Oct
, 86 (1151-78).
640
Giurgea I
et al.
The Knudson's two-hit model and timing of somatic mutation may account for the phenotypic diversity of focal congenital hyperinsulinism.
J. Clin. Endocrinol. Metab.,
2006
Oct
, 91 (4118-23).
641
Babilonia E
et al.
Mitogen-activated protein kinases inhibit the ROMK (Kir 1.1)-like small conductance K channels in the cortical collecting duct.
J. Am. Soc. Nephrol.,
2006
Oct
, 17 (2687-96).
642
Remedi MS
et al.
Hyperinsulinism in mice with heterozygous loss of K(ATP) channels.
Diabetologia,
2006
Oct
, 49 (2368-78).
643
Nakagawa T
et al.
Overexpression of regucalcin enhances its nuclear localization and suppresses L-type Ca2+ channel and calcium-sensing receptor mRNA expressions in cloned normal rat kidney proximal tubular epithelial NRK52E cells.
J. Cell. Biochem.,
2006
Nov
1
, 99 (1064-77).
644
Kaiser M
et al.
Progressive loss of a glial potassium channel (KCNJ10) in the spinal cord of the SOD1 (G93A) transgenic mouse model of amyotrophic lateral sclerosis.
J. Neurochem.,
2006
Nov
, 99 (900-12).
645
Slingerland AS
et al.
Improved motor development and good long-term glycaemic control with sulfonylurea treatment in a patient with the syndrome of intermediate developmental delay, early-onset generalised epilepsy and neonatal diabetes associated with the V59M mutation in the
Diabetologia,
2006
Nov
, 49 (2559-63).
646
Tarasov AI
et al.
A Kir6.2 mutation causing neonatal diabetes impairs electrical activity and insulin secretion from INS-1 beta-cells.
Diabetes,
2006
Nov
, 55 (3075-82).
647
Kobayashi T
et al.
Inhibition of G protein-activated inwardly rectifying K+ channels by the antidepressant paroxetine.
J. Pharmacol. Sci.,
2006
Nov
, 102 (278-87).
648
Wade JB
et al.
WNK1 kinase isoform switch regulates renal potassium excretion.
Proc. Natl. Acad. Sci. U.S.A.,
2006
May
30
, 103 (8558-63).
649
Sackin H
et al.
Role of conserved glycines in pH gating of Kir1.1 (ROMK).
Biophys. J.,
2006
May
15
, 90 (3582-9).
650
Bichet DG
Hereditary polyuric disorders: new concepts and differential diagnosis.
Semin. Nephrol.,
2006
May
, 26 (224-33).
651
Chen P
et al.
Modest dietary K+ restriction provokes insulin resistance of cellular K+ uptake and phosphorylation of renal outer medulla K+ channel without fall in plasma K+ concentration.
Am. J. Physiol., Cell Physiol.,
2006
May
, 290 (C1355-63).
652
Leng Q
et al.
WNK3, a kinase related to genes mutated in hereditary hypertension with hyperkalaemia, regulates the K+ channel ROMK1 (Kir1.1).
J. Physiol. (Lond.),
2006
Mar
1
, 571 (275-86).
653
Kobayashi T
et al.
Inhibition of G protein-activated inwardly rectifying K+ channels by ifenprodil.
Neuropsychopharmacology,
2006
Mar
, 31 (516-24).
654
Gloyn AL
et al.
Mutations in the genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism.
Hum. Mutat.,
2006
Mar
, 27 (220-31).
655
Neusch C
et al.
Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the ventral respiratory group: impact on extracellular K+ regulation.
J. Neurophysiol.,
2006
Mar
, 95 (1843-52).
656
Lu M
et al.
CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney.
J. Clin. Invest.,
2006
Mar
, 116 (797-807).
657
Proks P
et al.
A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes.
Hum. Mol. Genet.,
2006
Jun
1
, 15 (1793-800).
658
Flanagan SE
et al.
Mutations in KCNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype determined by genotype.
Diabetologia,
2006
Jun
, 49 (1190-7).
659
Sesti G
et al.
The E23K variant of KCNJ11 encoding the pancreatic beta-cell adenosine 5'-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes.
J. Clin. Endocrinol. Metab.,
2006
Jun
, 91 (2334-9).
660
Edghill EL
et al.
HLA genotyping supports a nonautoimmune etiology in patients diagnosed with diabetes under the age of 6 months.
Diabetes,
2006
Jun
, 55 (1895-8).
661
Proks P
et al.
Functional effects of mutations at F35 in the NH2-terminus of Kir6.2 (KCNJ11), causing neonatal diabetes, and response to sulfonylurea therapy.
Diabetes,
2006
Jun
, 55 (1731-7).
662
Shimomura K
et al.
Mutations at the same residue (R50) of Kir6.2 (KCNJ11) that cause neonatal diabetes produce different functional effects.
Diabetes,
2006
Jun
, 55 (1705-12).
663
Rapedius M
et al.
Structural and functional analysis of the putative pH sensor in the Kir1.1 (ROMK) potassium channel.
EMBO Rep.,
2006
Jun
, 7 (611-6).
664
Cope G
et al.
WNK1 affects surface expression of the ROMK potassium channel independent of WNK4.
J. Am. Soc. Nephrol.,
2006
Jul
, 17 (1867-74).
665
Gloyn AL
et al.
KCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes syndrome and other neurological features.
Eur. J. Hum. Genet.,
2006
Jul
, 14 (824-30).
666
Bailey MA
et al.
Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter's syndrome and in adaptation to a high-K diet.
Kidney Int.,
2006
Jul
, 70 (51-9).
667
Lazrak A
et al.
Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms.
Proc. Natl. Acad. Sci. U.S.A.,
2006
Jan
31
, 103 (1615-20).
668
Pondugula SR
et al.
Glucocorticoid regulation of genes in the amiloride-sensitive sodium transport pathway by semicircular canal duct epithelium of neonatal rat.
Physiol. Genomics,
2006
Jan
12
, 24 (114-23).
669
Johansen A
et al.
IRS1, KCNJ11, PPARgamma2 and HNF-1alpha: do amino acid polymorphisms in these candidate genes support a shared aetiology between type 1 and type 2 diabetes?
,
2006
Jan
, 8 (75-82).
670
Suchi M
et al.
Molecular and immunohistochemical analyses of the focal form of congenital hyperinsulinism.
Mod. Pathol.,
2006
Jan
, 19 (122-9).
671
Wang WH
Regulation of ROMK (Kir1.1) channels: new mechanisms and aspects.
Am. J. Physiol. Renal Physiol.,
2006
Jan
, 290 (F14-9).
672
Leng Q
et al.
Subunit-subunit interactions are critical for proton sensitivity of ROMK: evidence in support of an intermolecular gating mechanism.
Proc. Natl. Acad. Sci. U.S.A.,
2006
Feb
7
, 103 (1982-7).
673
Lin YW
et al.
A novel KCNJ11 mutation associated with congenital hyperinsulinism reduces the intrinsic open probability of beta-cell ATP-sensitive potassium channels.
J. Biol. Chem.,
2006
Feb
3
, 281 (3006-12).
674
Tammaro P
et al.
Functional effects of naturally occurring KCNJ11 mutations causing neonatal diabetes on cloned cardiac KATP channels.
J. Physiol. (Lond.),
2006
Feb
15
, 571 (3-14).
675
Fernández-Marmiesse A
et al.
Mutation spectra of ABCC8 gene in Spanish patients with Hyperinsulinism of Infancy (HI).
Hum. Mutat.,
2006
Feb
, 27 (214).
676
Watanabe S
et al.
[Bartter's syndrome and Gitelman's syndrome: Pathogenesis, pathophysiology, and therapy]
Nippon Rinsho,
2006
Feb
, 64 Suppl 2 (504-7).
677
Li D
et al.
Inhibition of MAPK stimulates the Ca2+ -dependent big-conductance K channels in cortical collecting duct.
Proc. Natl. Acad. Sci. U.S.A.,
2006
Dec
19
, 103 (19569-74).
678
Yamada S
et al.
Protection conferred by myocardial ATP-sensitive K+ channels in pressure overload-induced congestive heart failure revealed in KCNJ11 Kir6.2-null mutant.
J. Physiol. (Lond.),
2006
Dec
15
, 577 (1053-65).
679
Flechtner I
et al.
Diabetes and hypoglycaemia in young children and mutations in the Kir6.2 subunit of the potassium channel: therapeutic consequences.
Diabetes Metab.,
2006
Dec
, 32 (569-80).
680
Girard CA
et al.
Functional analysis of six Kir6.2 (KCNJ11) mutations causing neonatal diabetes.
Pflugers Arch.,
2006
Dec
, 453 (323-32).
681
Pearson ER
et al.
Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations.
N. Engl. J. Med.,
2006
Aug
3
, 355 (467-77).
682
Felix JP
et al.
Characterization of Kir1.1 channels with the use of a radiolabeled derivative of tertiapin.
Biochemistry,
2006
Aug
22
, 45 (10129-39).
683
Kane GC
et al.
KCNJ11 gene knockout of the Kir6.2 KATP channel causes maladaptive remodeling and heart failure in hypertension.
Hum. Mol. Genet.,
2006
Aug
1
, 15 (2285-97).
684
Darendeliler F
et al.
Hyperinsulinism in infancy--genetic aspects.
Pediatr Endocrinol Rev,
2006
Aug
, 3 Suppl 3 (521-6).
685
Yokoi N
et al.
Association studies of variants in the genes involved in pancreatic beta-cell function in type 2 diabetes in Japanese subjects.
Diabetes,
2006
Aug
, 55 (2379-86).
686
Jin Z
et al.
Developmental expression and localization of KCNJ10 K+ channels in the guinea pig inner ear.
Neuroreport,
2006
Apr
3
, 17 (475-9).
687
Olsen ML
et al.
Functional expression of Kir4.1 channels in spinal cord astrocytes.
Glia,
2006
Apr
1
, 53 (516-28).
688
Li D
et al.
Inhibition of phosphatidylinositol 3-kinase stimulates activity of the small-conductance K channel in the CCD.
Am. J. Physiol. Renal Physiol.,
2006
Apr
, 290 (F806-12).
689
Dunnick J
et al.
Critical pathways in heart function: bis(2-chloroethoxy)methane-induced heart gene transcript change in F344 rats.
Toxicol Pathol,
2006
, 34 (348-56).
690
Millar ID
et al.
A Kir2.3-like K+ conductance in mouse cortical collecting duct principal cells.
J. Membr. Biol.,
2006
, 211 (173-84).
691
Bundis F
et al.
Involvement of Golgin-160 in cell surface transport of renal ROMK channel: co-expression of Golgin-160 increases ROMK currents.
Cell. Physiol. Biochem.,
2006
, 17 (1-12).
692
Gallazzini M
et al.
Regulation of ROMK (Kir 1.1) channel expression in kidney thick ascending limb by hypertonicity: role of TonEBP and MAPK pathways.
Nephron Physiol,
2006
, 104 (126-35).
693
Giurgea I
et al.
Molecular mechanisms of neonatal hyperinsulinism.
Horm. Res.,
2006
, 66 (289-96).
694
Rapedius M
et al.
Long chain CoA esters as competitive antagonists of phosphatidylinositol 4,5-bisphosphate activation in Kir channels.
J. Biol. Chem.,
2005
Sep
2
, 280 (30760-7).
695
Proks P
et al.
Functional effects of KCNJ11 mutations causing neonatal diabetes: enhanced activation by MgATP.
Hum. Mol. Genet.,
2005
Sep
15
, 14 (2717-26).
696
Shang L
et al.
Functional characterisation of missense variations in the Kir4.1 potassium channel (KCNJ10) associated with seizure susceptibility.
Brain Res. Mol. Brain Res.,
2005
Sep
13
, 139 (178-83).
697
Kanjhan R
et al.
Tertiapin-Q blocks recombinant and native large conductance K+ channels in a use-dependent manner.
J. Pharmacol. Exp. Ther.,
2005
Sep
, 314 (1353-61).
698
Yoo D
et al.
A phosphorylation-dependent export structure in ROMK (Kir 1.1) channel overrides an endoplasmic reticulum localization signal.
J. Biol. Chem.,
2005
Oct
21
, 280 (35281-9).
699
Najjar F
et al.
Dietary K+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct.
Am. J. Physiol. Renal Physiol.,
2005
Oct
, 289 (F922-32).
700
Colombo C
et al.
Transient neonatal diabetes mellitus is associated with a recurrent (R201H) KCNJ11 (KIR6.2) mutation.
Diabetologia,
2005
Nov
, 48 (2439-41).
701
Wei Y
et al.
Mineralocorticoids decrease the activity of the apical small-conductance K channel in the cortical collecting duct.
Am. J. Physiol. Renal Physiol.,
2005
Nov
, 289 (F1065-71).
702
Xue H
et al.
A new ATP-sensitive potassium channel opener protects the kidney from hypertensive damage in spontaneously hypertensive rats.
J. Pharmacol. Exp. Ther.,
2005
Nov
, 315 (501-9).
703
Giurgea I
et al.
[Congenital hyperinsulinism in newborn and infant]
,
2005
Nov
, 12 (1628-35).
704
Klupa T
et al.
The identification of a R201H mutation in KCNJ11, which encodes Kir6.2, and successful transfer to sustained-release sulphonylurea therapy in a subject with neonatal diabetes: evidence for heterogeneity of beta cell function among carriers of the R201H mu
Diabetologia,
2005
May
, 48 (1029-31).
705
van Dam RM
et al.
Common variants in the ATP-sensitive K+ channel genes KCNJ11 (Kir6.2) and ABCC8 (SUR1) in relation to glucose intolerance: population-based studies and meta-analyses.
Diabet. Med.,
2005
May
, 22 (590-8).
706
Cope G
et al.
WNK kinases and the control of blood pressure.
Pharmacol. Ther.,
2005
May
, 106 (221-31).
707
Proks P
et al.
A gating mutation at the internal mouth of the Kir6.2 pore is associated with DEND syndrome.
EMBO Rep.,
2005
May
, 6 (470-5).
708
Lin DH
et al.
ROMK1 channel activity is regulated by monoubiquitination.
Proc. Natl. Acad. Sci. U.S.A.,
2005
Mar
22
, 102 (4306-11).
709
Bourgeois F
et al.
Determination of transport stoichiometry for two cation-coupled myo-inositol cotransporters: SMIT2 and HMIT.
J. Physiol. (Lond.),
2005
Mar
1
, 563 (333-43).
710
Gray DA
et al.
Basolateral K+ conductance in principal cells of rat CCD.
Am. J. Physiol. Renal Physiol.,
2005
Mar
, 288 (F493-504).
711
Hansen L
et al.
Genetics of type 2 diabetes mellitus: status and perspectives.
,
2005
Mar
, 7 (122-35).
712
Hansen SK
et al.
Analysis of separate and combined effects of common variation in KCNJ11 and PPARG on risk of type 2 diabetes.
J. Clin. Endocrinol. Metab.,
2005
Jun
, 90 (3629-37).
713
Yorifuji T
et al.
The C42R mutation in the Kir6.2 (KCNJ11) gene as a cause of transient neonatal diabetes, childhood diabetes, or later-onset, apparently type 2 diabetes mellitus.
J. Clin. Endocrinol. Metab.,
2005
Jun
, 90 (3174-8).
714
Nüsing RM
et al.
Expression of the potassium channel ROMK in adult and fetal human kidney.
Histochem. Cell Biol.,
2005
Jun
, 123 (553-9).
715
Lang F
et al.
Renal tubular transport and the genetic basis of hypertensive disease.
Clin. Exp. Nephrol.,
2005
Jun
, 9 (91-9).
716
Yamauchi K
et al.
Apical localization of renal K channel was not altered in mutant WNK4 transgenic mice.
Biochem. Biophys. Res. Commun.,
2005
Jul
8
, 332 (750-5).
717
O'Connell AD
et al.
Phosphorylation-regulated endoplasmic reticulum retention signal in the renal outer-medullary K+ channel (ROMK).
Proc. Natl. Acad. Sci. U.S.A.,
2005
Jul
12
, 102 (9954-9).
719
Hussain K
et al.
Hyperinsulinemic hypoglycemia in Beckwith-Wiedemann syndrome due to defects in the function of pancreatic beta-cell adenosine triphosphate-sensitive potassium channels.
J. Clin. Endocrinol. Metab.,
2005
Jul
, 90 (4376-82).
720
Vallon V
et al.
New insights into the role of serum- and glucocorticoid-inducible kinase SGK1 in the regulation of renal function and blood pressure.
Curr. Opin. Nephrol. Hypertens.,
2005
Jan
, 14 (59-66).
721
Massa O
et al.
KCNJ11 activating mutations in Italian patients with permanent neonatal diabetes.
Hum. Mutat.,
2005
Jan
, 25 (22-7).
722
Sun TJ
et al.
Inhibition of ROMK potassium channel by syntaxin 1A.
Am. J. Physiol. Renal Physiol.,
2005
Feb
, 288 (F284-9).
723
Lenzen KP
et al.
Supportive evidence for an allelic association of the human KCNJ10 potassium channel gene with idiopathic generalized epilepsy.
Epilepsy Res.,
2005
Feb
, 63 (113-8).
724
Gamba G
Role of WNK kinases in regulating tubular salt and potassium transport and in the development of hypertension.
Am. J. Physiol. Renal Physiol.,
2005
Feb
, 288 (F245-52).
725
Slingerland AS
et al.
[From gene to disease; neonatal diabetes mellitus and the KCNJ11 gene]
,
2005
Dec
3
, 149 (2732-6).
726
Shaat N
et al.
Association of the E23K polymorphism in the KCNJ11 gene with gestational diabetes mellitus.
Diabetologia,
2005
Dec
, 48 (2544-51).
727
Yeh SH
et al.
Electrostatics in the cytoplasmic pore produce intrinsic inward rectification in kir2.1 channels.
J. Gen. Physiol.,
2005
Dec
, 126 (551-62).
728
Le Fur S
et al.
Association of Kir6.2 and INS VNTR variants with glucose homeostasis in young obese.
Physiol. Genomics,
2005
Aug
11
, 22 (398-401).
730
Golbang AP
et al.
A new kindred with pseudohypoaldosteronism type II and a novel mutation (564D>H) in the acidic motif of the WNK4 gene.
Hypertension,
2005
Aug
, 46 (295-300).
731
Wang R
et al.
Subunit stoichiometry of the Kir1.1 channel in proton-dependent gating.
J. Biol. Chem.,
2005
Apr
8
, 280 (13433-41).
732
Gloyn AL
et al.
Relapsing diabetes can result from moderately activating mutations in KCNJ11.
Hum. Mol. Genet.,
2005
Apr
1
, 14 (925-34).
733
Ohkubo K
et al.
Genotypes of the pancreatic beta-cell K-ATP channel and clinical phenotypes of Japanese patients with persistent hyperinsulinaemic hypoglycaemia of infancy.
Clin. Endocrinol. (Oxf),
2005
Apr
, 62 (458-65).
734
Lin DH
et al.
The protein tyrosine kinase-dependent pathway mediates the effect of K intake on renal K secretion.
,
2005
Apr
, 20 (140-6).
735
Sackin H
et al.
Structural locus of the pH gate in the Kir1.1 inward rectifier channel.
Biophys. J.,
2005
Apr
, 88 (2597-606).
736
Vejrazková D
et al.
[Two promising candidate genes in the ethiopathogenesis of DM2 - PPARgamma2 and KCNJ11]
Cas. Lek. Cesk.,
2005
, 144 (721-5; discussion 725-6).
737
Holstein A
et al.
The Glu23Lys polymorphism in KCNJ11 and impaired hypoglycaemia awareness in patients with type 1 diabetes.
J. Hum. Genet.,
2005
, 50 (530-3).
738
Slingerland AS
et al.
Mutations in the Kir6.2 subunit of the KATP channel and permanent neonatal diabetes: new insights and new treatment.
Ann. Med.,
2005
, 37 (186-95).
739
Wang W
Renal potassium channels: recent developments.
Curr. Opin. Nephrol. Hypertens.,
2004
Sep
, 13 (549-55).
740
Behr R
et al.
Mild nephrogenic diabetes insipidus caused by Foxa1 deficiency.
J. Biol. Chem.,
2004
Oct
1
, 279 (41936-41).
741
Kobayashi T
et al.
Modulators of G protein-activated inwardly rectifying K+ channels: potentially therapeutic agents for addictive drug users.
Ann. N. Y. Acad. Sci.,
2004
Oct
, 1025 (590-4).
742
Vaxillaire M
et al.
Kir6.2 mutations are a common cause of permanent neonatal diabetes in a large cohort of French patients.
Diabetes,
2004
Oct
, 53 (2719-22).
743
Sagen JV
et al.
Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy.
Diabetes,
2004
Oct
, 53 (2713-8).
744
Kobayashi T
et al.
Inhibition of G protein-activated inwardly rectifying K+ channels by various antidepressant drugs.
Neuropsychopharmacology,
2004
Oct
, 29 (1841-51).
745
Fukuyama S
et al.
Novel mutations of the chloride channel Kb gene in two Japanese patients clinically diagnosed as Bartter syndrome with hypocalciuria.
J. Clin. Endocrinol. Metab.,
2004
Nov
, 89 (5847-50).
746
Edghill EL
et al.
Activating mutations in the KCNJ11 gene encoding the ATP-sensitive K+ channel subunit Kir6.2 are rare in clinically defined type 1 diabetes diagnosed before 2 years.
Diabetes,
2004
Nov
, 53 (2998-3001).
747
Frindt G
et al.
Apical potassium channels in the rat connecting tubule.
Am. J. Physiol. Renal Physiol.,
2004
Nov
, 287 (F1030-7).
748
Wang Z
et al.
Comparison of WNK4 and WNK1 kinase and inhibiting activities.
Biochem. Biophys. Res. Commun.,
2004
May
7
, 317 (939-44).
749
Lin DH
et al.
Protein tyrosine kinase is expressed and regulates ROMK1 location in the cortical collecting duct.
Am. J. Physiol. Renal Physiol.,
2004
May
, 286 (F881-92).
750
Florez JC
et al.
Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region.
Diabetes,
2004
May
, 53 (1360-8).
752
Yamauchi K
et al.
Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins.
Proc. Natl. Acad. Sci. U.S.A.,
2004
Mar
30
, 101 (4690-4).
753
Eftychi C
et al.
Analysis of the type 2 diabetes-associated single nucleotide polymorphisms in the genes IRS1, KCNJ11, and PPARG2 in type 1 diabetes.
Diabetes,
2004
Mar
, 53 (870-3).
754
Lu M
et al.
ROMK is required for expression of the 70-pS K channel in the thick ascending limb.
Am. J. Physiol. Renal Physiol.,
2004
Mar
, 286 (F490-5).
755
Sterling H
et al.
PKC expression is regulated by dietary K intake and mediates internalization of SK channels in the CCD.
Am. J. Physiol. Renal Physiol.,
2004
Jun
, 286 (F1072-8).
756
Satlin LM
Developmental regulation of expression of renal potassium secretory channels.
Curr. Opin. Nephrol. Hypertens.,
2004
Jul
, 13 (445-50).
757
Gagnon MP
et al.
Glucose accumulation can account for the initial water flux triggered by Na+/glucose cotransport.
Biophys. J.,
2004
Jan
, 86 (125-33).
758
Wu J
et al.
Critical protein domains and amino acid residues for gating the KIR6.2 channel by intracellular ATP.
J. Cell. Physiol.,
2004
Jan
, 198 (73-81).
759
Yoo D
et al.
Assembly and trafficking of a multiprotein ROMK (Kir 1.1) channel complex by PDZ interactions.
J. Biol. Chem.,
2004
Feb
20
, 279 (6863-73).
760
Kahle KT
et al.
WNK4 regulates apical and basolateral Cl- flux in extrarenal epithelia.
Proc. Natl. Acad. Sci. U.S.A.,
2004
Feb
17
, 101 (2064-9).
761
Wu J
et al.
Expression and coexpression of CO2-sensitive Kir channels in brainstem neurons of rats.
J. Membr. Biol.,
2004
Feb
1
, 197 (179-91).
762
Jeron A
et al.
KCNJ11 polymorphisms and sudden cardiac death in patients with acute myocardial infarction.
J. Mol. Cell. Cardiol.,
2004
Feb
, 36 (287-93).
763
Buono RJ
et al.
Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility.
Epilepsy Res.,
2004
Feb
, 58 (175-83).
764
Fournet JC
et al.
Genetics of congenital hyperinsulinism.
Endocr. Pathol.,
2004
Fall
, 15 (233-40).
765
Proks P
et al.
Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features.
Proc. Natl. Acad. Sci. U.S.A.,
2004
Dec
14
, 101 (17539-44).
766
Laukkanen O
et al.
Polymorphisms of the SUR1 (ABCC8) and Kir6.2 (KCNJ11) genes predict the conversion from impaired glucose tolerance to type 2 diabetes. The Finnish Diabetes Prevention Study.
J. Clin. Endocrinol. Metab.,
2004
Dec
, 89 (6286-90).
767
Sonalker PA
et al.
Increased expression of the sodium transporter BSC-1 in spontaneously hypertensive rats.
J. Pharmacol. Exp. Ther.,
2004
Dec
, 311 (1052-61).
768
Tornovsky S
et al.
Hyperinsulinism of infancy: novel ABCC8 and KCNJ11 mutations and evidence for additional locus heterogeneity.
J. Clin. Endocrinol. Metab.,
2004
Dec
, 89 (6224-34).
769
Zhang YY
et al.
Carboxy-terminal determinants of conductance in inward-rectifier K channels.
J. Gen. Physiol.,
2004
Dec
, 124 (729-39).
770
Wangemann P
et al.
Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model.
,
2004
Aug
20
, 2 (30).
771
Zitron E
et al.
Human cardiac inwardly rectifying current IKir2.2 is upregulated by activation of protein kinase A.
Cardiovasc. Res.,
2004
Aug
15
, 63 (520-7).
772
Chen L
et al.
Inwardly rectifying potassium channels in rat retinal ganglion cells.
Eur. J. Neurosci.,
2004
Aug
, 20 (956-64).
773
Gloyn AL
et al.
Permanent neonatal diabetes due to paternal germline mosaicism for an activating mutation of the KCNJ11 Gene encoding the Kir6.2 subunit of the beta-cell potassium adenosine triphosphate channel.
J. Clin. Endocrinol. Metab.,
2004
Aug
, 89 (3932-5).
774
Gloyn AL
et al.
Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes.
N. Engl. J. Med.,
2004
Apr
29
, 350 (1838-49).
775
Ferraro TN
et al.
Fine mapping of a seizure susceptibility locus on mouse Chromosome 1: nomination of Kcnj10 as a causative gene.
Mamm. Genome,
2004
Apr
, 15 (239-51).
776
Dahlmann A
et al.
Regulation of Kir channels by intracellular pH and extracellular K(+): mechanisms of coupling.
J. Gen. Physiol.,
2004
Apr
, 123 (441-54).
777
Sackin H
et al.
Potassium-dependent slow inactivation of Kir1.1 (ROMK) channels.
Biophys. J.,
2004
Apr
, 86 (2145-55).
778
Hoagland KM
et al.
Elevated BSC-1 and ROMK expression in Dahl salt-sensitive rat kidneys.
Hypertension,
2004
Apr
, 43 (860-5).
779
Naesens M
et al.
Bartter's and Gitelman's syndromes: from gene to clinic.
Nephron Physiol,
2004
, 96 (p65-78).
780
Cosgrove KE
et al.
Genetics and pathophysiology of hyperinsulinism in infancy.
Horm. Res.,
2004
, 61 (270-88).
781
Suchi M
et al.
Histopathology of congenital hyperinsulinism: retrospective study with genotype correlations.
Pediatr. Dev. Pathol.,
2003 Jul-Aug
, 6 (322-33).
782
Wei Y
et al.
Acute application of TNF stimulates apical 70-pS K+ channels in the thick ascending limb of rat kidney.
Am. J. Physiol. Renal Physiol.,
2003
Sep
, 285 (F491-7).
783
Chwalisz WT
et al.
The circling behavior of the deafblind LEW-ci2 rat is linked to a segment of RNO10 containing Myo15 and Kcnj12.
Mamm. Genome,
2003
Sep
, 14 (620-7).
784
Fukuyama S
et al.
Analysis of renal tubular electrolyte transporter genes in seven patients with hypokalemic metabolic alkalosis.
Kidney Int.,
2003
Sep
, 64 (808-16).
785
Peters M
et al.
Classification and rescue of ROMK mutations underlying hyperprostaglandin E syndrome/antenatal Bartter syndrome.
Kidney Int.,
2003
Sep
, 64 (923-32).
787
Babenko AP
et al.
Sur domains that associate with and gate KATP pores define a novel gatekeeper.
J. Biol. Chem.,
2003
Oct
24
, 278 (41577-80).
788
Cader ZM
et al.
Significant linkage to migraine with aura on chromosome 11q24.
Hum. Mol. Genet.,
2003
Oct
1
, 12 (2511-7).
789
Bruns JB
et al.
Multiple epithelial Na+ channel domains participate in subunit assembly.
Am. J. Physiol. Renal Physiol.,
2003
Oct
, 285 (F600-9).
790
Nakai S
et al.
Crucial roles of Brn1 in distal tubule formation and function in mouse kidney.
Development,
2003
Oct
, 130 (4751-9).
791
Barroso I
et al.
Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action.
PLoS Biol.,
2003
Oct
, 1 (E20).
792
Palmada M
et al.
Molecular requirements for the regulation of the renal outer medullary K(+) channel ROMK1 by the serum- and glucocorticoid-inducible kinase SGK1.
Biochem. Biophys. Res. Commun.,
2003
Nov
21
, 311 (629-34).
793
Zeng WZ
et al.
Protein kinase C inhibits ROMK1 channel activity via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism.
J. Biol. Chem.,
2003
May
9
, 278 (16852-6).
794
Gallazzini M
et al.
Regulation by glucocorticoids and osmolality of expression of ROMK (Kir 1.1), the apical K channel of thick ascending limb.
Am. J. Physiol. Renal Physiol.,
2003
May
, 284 (F977-86).
795
Schulze D
et al.
Phosphatidylinositol 4,5-bisphosphate (PIP2) modulation of ATP and pH sensitivity in Kir channels. A tale of an active and a silent PIP2 site in the N terminus.
J. Biol. Chem.,
2003
Mar
21
, 278 (10500-5).
796
Kobayashi T
et al.
Inhibition of G protein-activated inwardly rectifying K+ channels by fluoxetine (Prozac).
Br. J. Pharmacol.,
2003
Mar
, 138 (1119-28).
797
Finer G
et al.
Transient neonatal hyperkalemia in the antenatal (ROMK defective) Bartter syndrome.
J. Pediatr.,
2003
Mar
, 142 (318-23).
798
Suzuki Y
et al.
Expression of the K+ channel Kir7.1 in the developing rat kidney: role in K+ excretion.
Kidney Int.,
2003
Mar
, 63 (969-75).
799
Rozengurt N
et al.
Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit.
Hear. Res.,
2003
Mar
, 177 (71-80).
800
Sterling H
et al.
Tetanus toxin abolishes exocytosis of ROMK1 induced by inhibition of protein tyrosine kinase.
Am. J. Physiol. Renal Physiol.,
2003
Mar
, 284 (F510-7).
801
Yoo D
et al.
Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A.
J. Biol. Chem.,
2003
Jun
20
, 278 (23066-75).
802
Zelikovic I
et al.
A novel mutation in the chloride channel gene, CLCNKB, as a cause of Gitelman and Bartter syndromes.
Kidney Int.,
2003
Jan
, 63 (24-32).
803
Schultz JH
et al.
Central sympathetic chemosensitivity and Kir1 potassium channels in the cat.
Brain Res.,
2003
Feb
14
, 963 (113-20).
804
Cho JT
et al.
Heterozygous mutations of the gene for Kir 1.1 (ROMK) in antenatal Bartter syndrome presenting with transient hyperkalemia, evolving to a benign course.
J. Korean Med. Sci.,
2003
Feb
, 18 (65-8).
805
Sackin H
et al.
Permeant cations and blockers modulate pH gating of ROMK channels.
Biophys. J.,
2003
Feb
, 84 (910-21).
806
Nielsen EM
et al.
The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes.
Diabetes,
2003
Feb
, 52 (573-7).
807
808
Braun GS
et al.
Kir1.1 expression in embryonic kidney epithelia.
Biochem. Biophys. Res. Commun.,
2003
Dec
26
, 312 (1191-5).
809
Chu PY
et al.
Dietary potassium restriction stimulates endocytosis of ROMK channel in rat cortical collecting duct.
Am. J. Physiol. Renal Physiol.,
2003
Dec
, 285 (F1179-87).
810
Tourne G
et al.
[Prenatal Bartter's syndrome. Report of two cases]
,
2003
Dec
, 32 (751-4).
811
Kahle KT
et al.
WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion.
Nat. Genet.,
2003
Dec
, 35 (372-6).
812
Palmada M
et al.
Negative charge at the consensus sequence for the serum- and glucocorticoid-inducible kinase, SGK1, determines pH sensitivity of the renal outer medullary K+ channel, ROMK1.
Biochem. Biophys. Res. Commun.,
2003
Aug
8
, 307 (967-72).
813
Delgado MM
et al.
Sodium and potassium clearances by the maturing kidney: clinical-molecular correlates.
Pediatr. Nephrol.,
2003
Aug
, 18 (759-67).
814
Kim D
et al.
Changes in renal medullary transport proteins during uncontrolled diabetes mellitus in rats.
Am. J. Physiol. Renal Physiol.,
2003
Aug
, 285 (F303-9).
815
Konstas AA
et al.
Identification of domains that control the heteromeric assembly of Kir5.1/Kir4.0 potassium channels.
Am. J. Physiol., Cell Physiol.,
2003
Apr
, 284 (C910-7).
816
Fournet JC
et al.
The genetics of neonatal hyperinsulinism.
Horm. Res.,
2003
, 59 Suppl 1 (30-4).
817
Lang F
et al.
Regulation of channels by the serum and glucocorticoid-inducible kinase - implications for transport, excitability and cell proliferation.
Cell. Physiol. Biochem.,
2003
, 13 (41-50).
818
Yun CC
Concerted roles of SGK1 and the Na+/H+ exchanger regulatory factor 2 (NHERF2) in regulation of NHE3.
Cell. Physiol. Biochem.,
2003
, 13 (29-40).
819
Wangemann P
K(+) cycling and its regulation in the cochlea and the vestibular labyrinth.
Audiol. Neurootol.,
2002 Jul-Aug
, 7 (199-205).
820
Darendeliler F
et al.
ABCC8 (SUR1) and KCNJ11 (KIR6.2) mutations in persistent hyperinsulinemic hypoglycemia of infancy and evaluation of different therapeutic measures.
J. Pediatr. Endocrinol. Metab.,
2002 Jul-Aug
, 15 (993-1000).
821
Lu M
et al.
Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter's) knockout mice.
J. Biol. Chem.,
2002
Oct
4
, 277 (37881-7).
822
Flagg TP
et al.
Molecular mechanism of a COOH-terminal gating determinant in the ROMK channel revealed by a Bartter's disease mutation.
J. Physiol. (Lond.),
2002
Oct
15
, 544 (351-62).
823
Lin DH
et al.
K depletion increases protein tyrosine kinase-mediated phosphorylation of ROMK.
Am. J. Physiol. Renal Physiol.,
2002
Oct
, 283 (F671-7).
824
Zeng WZ
et al.
Evidence for endocytosis of ROMK potassium channel via clathrin-coated vesicles.
Am. J. Physiol. Renal Physiol.,
2002
Oct
, 283 (F630-9).
825
Kaibara M
et al.
Identification of human Kir2.2 (KCNJ12) gene encoding functional inward rectifier potassium channel in both mammalian cells and Xenopus oocytes.
FEBS Lett.,
2002
Nov
6
, 531 (250-4).
826
Lin D
et al.
Protein kinase C (PKC)-induced phosphorylation of ROMK1 is essential for the surface expression of ROMK1 channels.
J. Biol. Chem.,
2002
Nov
15
, 277 (44278-84).
827
Farook VS
et al.
Molecular analysis of KCNJ10 on 1q as a candidate gene for Type 2 diabetes in Pima Indians.
Diabetes,
2002
Nov
, 51 (3342-6).
828
Lu M
et al.
Hydrolyzable ATP and PIP(2) modulate the small-conductance K+ channel in apical membranes of rat cortical-collecting duct (CCD).
J. Gen. Physiol.,
2002
Nov
, 120 (603-15).
829
Ando-Akatsuka Y
et al.
Down-regulation of volume-sensitive Cl- channels by CFTR is mediated by the second nucleotide-binding domain.
Pflugers Arch.,
2002
Nov
, 445 (177-86).
830
Zeng WZ
et al.
Structural determinants and specificities for ROMK1-phosphoinositide interaction.
Am. J. Physiol. Renal Physiol.,
2002
May
, 282 (F826-34).
831
Macgregor GG
et al.
Nucleotides and phospholipids compete for binding to the C terminus of KATP channels.
Proc. Natl. Acad. Sci. U.S.A.,
2002
Mar
5
, 99 (2726-31).
833
Oonuma H
et al.
Inward rectifier K(+) current in human bronchial smooth muscle cells: inhibition with antisense oligonucleotides targeted to Kir2.1 mRNA.
Am. J. Respir. Cell Mol. Biol.,
2002
Mar
, 26 (371-9).
834
Vanoye CG
et al.
The carboxyl termini of K(ATP) channels bind nucleotides.
J. Biol. Chem.,
2002
Jun
28
, 277 (23260-70).
835
Konstas AA
et al.
Intrinsic sensitivity of Kir1.1 (ROMK) to glibenclamide in the absence of SUR2B. Implications for the identity of the renal ATP-regulated secretory K+ channel.
J. Biol. Chem.,
2002
Jun
14
, 277 (21346-51).
836
Raap M
et al.
Diversity of Kir channel subunit mRNA expressed by retinal glial cells of the guinea-pig.
Neuroreport,
2002
Jun
12
, 13 (1037-40).
837
Waldegger S
et al.
Barttin increases surface expression and changes current properties of ClC-K channels.
Pflugers Arch.,
2002
Jun
, 444 (411-8).
838
Schwalbe RA
et al.
Site-directed glycosylation tagging of functional Kir2.1 reveals that the putative pore-forming segment is extracellular.
J. Biol. Chem.,
2002
Jul
5
, 277 (24382-9).
839
Konstas AA
et al.
Cystic fibrosis transmembrane conductance regulator-dependent up-regulation of Kir1.1 (ROMK) renal K+ channels by the epithelial sodium channel.
J. Biol. Chem.,
2002
Jul
12
, 277 (25377-84).
840
Starremans PG
et al.
Functional implications of mutations in the human renal outer medullary potassium channel (ROMK2) identified in Bartter syndrome.
Pflugers Arch.,
2002
Jan
, 443 (466-72).
841
Wang W
et al.
Reduced expression of Na-K-2Cl cotransporter in medullary TAL in vitamin D-induced hypercalcemia in rats.
Am. J. Physiol. Renal Physiol.,
2002
Jan
, 282 (F34-44).
842
Sterling H
et al.
Inhibition of protein-tyrosine phosphatase stimulates the dynamin-dependent endocytosis of ROMK1.
J. Biol. Chem.,
2002
Feb
8
, 277 (4317-23).
843
Peters M
et al.
Clinical presentation of genetically defined patients with hypokalemic salt-losing tubulopathies.
Am. J. Med.,
2002
Feb
15
, 112 (183-90).
844
Brochiero E
et al.
Cloning of rabbit Kir6.1, SUR2A, and SUR2B: possible candidates for a renal K(ATP) channel.
Am. J. Physiol. Renal Physiol.,
2002
Feb
, 282 (F289-300).
845
Marcus DC
et al.
KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential.
Am. J. Physiol., Cell Physiol.,
2002
Feb
, 282 (C403-7).
846
Dong K
et al.
Localization of the ATP/phosphatidylinositol 4,5 diphosphate-binding site to a 39-amino acid region of the carboxyl terminus of the ATP-regulated K+ channel Kir1.1.
J. Biol. Chem.,
2002
Dec
20
, 277 (49366-73).
847
Braun GS
et al.
Developmental expression and functional significance of Kir channel subunits in ureteric bud and nephron epithelia.
Pflugers Arch.,
2002
Dec
, 445 (321-30).
848
Yun CC
et al.
The serum and glucocorticoid-inducible kinase SGK1 and the Na+/H+ exchange regulating factor NHERF2 synergize to stimulate the renal outer medullary K+ channel ROMK1.
J. Am. Soc. Nephrol.,
2002
Dec
, 13 (2823-30).
849
Wang WH
et al.
Regulation of ROMK channels by protein tyrosine kinase and tyrosine phosphatase.
Trends Cardiovasc. Med.,
2002
Apr
, 12 (138-42).
851
García Nieto V
et al.
[Neonatal Bartter disease diagnosed with the detection of a mutation of the KCNJ1 gene which codifies the synthesis of the renal ROMK1 potassium channel]
,
2001 Sep-Oct
, 21 (448-55).
852
Peco-Antic A
et al.
[Bartter's syndrome: new classification, old therapy]
,
2001 May-Jun
, 129 (139-42).
853
Piao H
et al.
Requirement of multiple protein domains and residues for gating K(ATP) channels by intracellular pH.
J. Biol. Chem.,
2001
Sep
28
, 276 (36673-80).
854
Huang CL
Regulation of ROMK trafficking and channel activity.
Curr. Opin. Nephrol. Hypertens.,
2001
Sep
, 10 (693-8).
855
Sage CL
et al.
Immunolocalization of ClC-K chloride channel in strial marginal cells and vestibular dark cells.
Hear. Res.,
2001
Oct
, 160 (1-9).
856
Estévez R
et al.
Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion.
Nature,
2001
Nov
29
, 414 (558-61).
857
Dong K
et al.
An amino acid triplet in the NH2 terminus of rat ROMK1 determines interaction with SUR2B.
J. Biol. Chem.,
2001
Nov
23
, 276 (44347-53).
858
Choe H
et al.
Gating properties of inward-rectifier potassium channels: effects of permeant ions.
J. Membr. Biol.,
2001
Nov
1
, 184 (81-9).
859
Zhou W
et al.
Mechanism underlying bupivacaine inhibition of G protein-gated inwardly rectifying K+ channels.
Proc. Natl. Acad. Sci. U.S.A.,
2001
May
22
, 98 (6482-7).
860
Woda CB
et al.
Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel.
Am. J. Physiol. Renal Physiol.,
2001
May
, 280 (F786-93).
861
Jeck N
et al.
Functional heterogeneity of ROMK mutations linked to hyperprostaglandin E syndrome.
Kidney Int.,
2001
May
, 59 (1803-11).
862
Gimelreich D
et al.
Regulation of ROMK and channel-inducing factor (CHIF) in acute renal failure due to ischemic reperfusion injury.
Kidney Int.,
2001
May
, 59 (1812-20).
863
Guo D
et al.
Kinetics of inward-rectifier K+ channel block by quaternary alkylammonium ions. dimension and properties of the inner pore.
J. Gen. Physiol.,
2001
May
, 117 (395-406).
864
Moral Z
et al.
Regulation of ROMK1 channels by protein-tyrosine kinase and -tyrosine phosphatase.
J. Biol. Chem.,
2001
Mar
9
, 276 (7156-63).
865
Ramu Y
et al.
Titration of tertiapin-Q inhibition of ROMK1 channels by extracellular protons.
Biochemistry,
2001
Mar
27
, 40 (3601-5).
866
Derst C
et al.
Genetic and functional linkage of Kir5.1 and Kir2.1 channel subunits.
FEBS Lett.,
2001
Mar
2
, 491 (305-11).
867
Proks P
et al.
Interaction of stilbene disulphonates with cloned K(ATP) channels.
Br. J. Pharmacol.,
2001
Mar
, 132 (973-82).
868
Fournet JC
et al.
Unbalanced expression of 11p15 imprinted genes in focal forms of congenital hyperinsulinism: association with a reduction to homozygosity of a mutation in ABCC8 or KCNJ11.
Am. J. Pathol.,
2001
Jun
, 158 (2177-84).
869
Schulte U
et al.
K(+)-dependent gating of K(ir)1.1 channels is linked to pH gating through a conformational change in the pore.
J. Physiol. (Lond.),
2001
Jul
1
, 534 (49-58).
870
Yamakura T
et al.
Differential effects of general anesthetics on G protein-coupled inwardly rectifying and other potassium channels.
Anesthesiology,
2001
Jul
, 95 (144-53).
871
Wolf K
et al.
Differential gene regulation of renal salt entry pathways by salt load in the distal nephron of the rat.
Pflugers Arch.,
2001
Jul
, 442 (498-504).
872
Ecelbarger CA
et al.
Regulation of potassium channel Kir 1.1 (ROMK) abundance in the thick ascending limb of Henle's loop.
J. Am. Soc. Nephrol.,
2001
Jan
, 12 (10-8).
873
Wade JB
et al.
Differential renal distribution of NHERF isoforms and their colocalization with NHE3, ezrin, and ROMK.
Am. J. Physiol., Cell Physiol.,
2001
Jan
, 280 (C192-8).
874
Sackin H
et al.
Regulation of ROMK by extracellular cations.
Biophys. J.,
2001
Feb
, 80 (683-97).
875
Hilgemann DW
et al.
The complex and intriguing lives of PIP2 with ion channels and transporters.
Sci. STKE,
2001
Dec
4
, 2001 (RE19).
876
Shaer AJ
Inherited primary renal tubular hypokalemic alkalosis: a review of Gitelman and Bartter syndromes.
Am. J. Med. Sci.,
2001
Dec
, 322 (316-32).
877
Jiang C
et al.
An alternative approach to the identification of respiratory central chemoreceptors in the brainstem.
,
2001
Dec
, 129 (141-57).
878
Riochet DF
et al.
Inactivating properties of recombinant ROMK2 channels expressed in mammalian cells.
Biochem. Biophys. Res. Commun.,
2001
Aug
17
, 286 (376-80).
879
Wei Y
et al.
Effect of dietary K intake on apical small-conductance K channel in CCD: role of protein tyrosine kinase.
Am. J. Physiol. Renal Physiol.,
2001
Aug
, 281 (F206-12).
880
Bhandari S
et al.
Biophysical effects of pore mutations of ROMK1.
Clin. Sci.,
2001
Aug
, 101 (121-30).
881
Moschèn
et al.
Effects of gallium and mercury ions on transport systems.
J. Dent. Res.,
2001
Aug
, 80 (1753-7).
882
Bhandari S
et al.
Influences of the N- and C-termini of the distal nephron inward rectifier, ROMK.
Kidney Blood Press. Res.,
2001
, 24 (142-8).
883
Ali S
et al.
PKA-induced stimulation of ROMK1 channel activity is governed by both tethering and non-tethering domains of an A kinase anchor protein.
Cell. Physiol. Biochem.,
2001
, 11 (135-42).
884
Thakker RV
Molecular pathology of renal chloride channels in Dent's disease and Bartter's syndrome.
Exp. Nephrol.,
2000 Nov-Dec
, 8 (351-60).
885
Pabon A
et al.
Glycosylation of GIRK1 at Asn119 and ROMK1 at Asn117 has different consequences in potassium channel function.
J. Biol. Chem.,
2000
Sep
29
, 275 (30677-82).
886
Morales MM
et al.
The cystic fibrosis transmembrane regulator (CFTR) in the kidney.
An. Acad. Bras. Cienc.,
2000
Sep
, 72 (399-406).
887
Bitner-Glindzicz M
et al.
A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene.
Nat. Genet.,
2000
Sep
, 26 (56-60).
888
Döring F
et al.
Genomic structure and promoter analysis of the rat kir7.1 potassium channel gene (Kcnj13).
FEBS Lett.,
2000
Oct
20
, 483 (93-8).
889
Xu H
et al.
A single residue contributes to the difference between Kir4.1 and Kir1.1 channels in pH sensitivity, rectification and single channel conductance.
J. Physiol. (Lond.),
2000
Oct
15
, 528 Pt 2 (267-77).
890
Ortega B
et al.
Stable, polarised, functional expression of Kir1.1b channel protein in Madin-Darby canine kidney cell line.
J. Physiol. (Lond.),
2000
Oct
1
, 528 Pt 1 (5-13).
891
Schulte U
et al.
Gating of inward-rectifier K+ channels by intracellular pH.
Eur. J. Biochem.,
2000
Oct
, 267 (5837-41).
892
Guo D
et al.
Pore block versus intrinsic gating in the mechanism of inward rectification in strongly rectifying IRK1 channels.
J. Gen. Physiol.,
2000
Oct
, 116 (561-8).
893
Wu MS
et al.
Cyclosporine stimulates Na+-K+-Cl- cotransport activity in cultured mouse medullary thick ascending limb cells.
Kidney Int.,
2000
Oct
, 58 (1652-63).
894
Xu H
et al.
Molecular determinants for the distinct pH sensitivity of Kir1.1 and Kir4.1 channels.
Am. J. Physiol., Cell Physiol.,
2000
Nov
, 279 (C1464-71).
895
Leipziger J
et al.
PKA site mutations of ROMK2 channels shift the pH dependence to more alkaline values.
Am. J. Physiol. Renal Physiol.,
2000
Nov
, 279 (F919-26).
896
Khaliq S
et al.
Novel locus for autosomal recessive cone-rod dystrophy CORD8 mapping to chromosome 1q12-Q24.
Invest. Ophthalmol. Vis. Sci.,
2000
Nov
, 41 (3709-12).
897
Rabb H
et al.
Possible molecular basis for changes in potassium handling in acute renal failure.
Am. J. Kidney Dis.,
2000
May
, 35 (871-7).
898
Chanchevalap S
et al.
Involvement of histidine residues in proton sensing of ROMK1 channel.
J. Biol. Chem.,
2000
Mar
17
, 275 (7811-7).
899
Sgard F
et al.
Regulation of ATP-sensitive potassium channel mRNA expression in rat kidney following ischemic injury.
Biochem. Biophys. Res. Commun.,
2000
Mar
16
, 269 (618-22).
900
Wulfsen I
et al.
Expression of mRNA for voltage-dependent and inward-rectifying K channels in GH3/B6 cells and rat pituitary.
J. Neuroendocrinol.,
2000
Mar
, 12 (263-72).
901
Töpert C
et al.
Cloning, structure and assignment to chromosome 19q13 of the human Kir2.4 inwardly rectifying potassium channel gene (KCNJ14).
Mamm. Genome,
2000
Mar
, 11 (247-9).
902
Cahill P
et al.
Identification of the cystic fibrosis transmembrane conductance regulator domains that are important for interactions with ROMK2.
J. Biol. Chem.,
2000
Jun
2
, 275 (16697-701).
903
Mennitt PA
et al.
Potassium restriction downregulates ROMK expression in rat kidney.
Am. J. Physiol. Renal Physiol.,
2000
Jun
, 278 (F916-24).
904
Thiery E
et al.
Developmentally regulated expression of the murine ortholog of the potassium channel KIR4.2 (KCNJ15).
Mech. Dev.,
2000
Jul
, 95 (313-6).
905
Benchimol C
et al.
Developmental expression of ROMK mRNA in rabbit cortical collecting duct.
Pediatr. Res.,
2000
Jan
, 47 (46-52).
906
Keren-Raifman T
et al.
Expression cloning of KCRF, a potassium channel regulatory factor.
Biochem. Biophys. Res. Commun.,
2000
Aug
11
, 274 (852-8).
907
Nadeau H
et al.
ROMK1 (Kir1.1) causes apoptosis and chronic silencing of hippocampal neurons.
J. Neurophysiol.,
2000
Aug
, 84 (1062-75).
908
Konrad M
et al.
Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome.
J. Am. Soc. Nephrol.,
2000
Aug
, 11 (1449-59).
909
Leung YM
et al.
Phosphatidylinositol 4,5-bisphosphate and intracellular pH regulate the ROMK1 potassium channel via separate but interrelated mechanisms.
J. Biol. Chem.,
2000
Apr
7
, 275 (10182-9).
910
Zhu G
et al.
CO(2) inhibits specific inward rectifier K(+) channels by decreases in intra- and extracellular pH.
J. Cell. Physiol.,
2000
Apr
, 183 (53-64).
911
Choe H
et al.
Permeation properties of inward-rectifier potassium channels and their molecular determinants.
J. Gen. Physiol.,
2000
Apr
, 115 (391-404).
912
Tanemoto M
et al.
Rat homolog of sulfonylurea receptor 2B determines glibenclamide sensitivity of ROMK2 in Xenopus laevis oocyte.
Am. J. Physiol. Renal Physiol.,
2000
Apr
, 278 (F659-66).
913
Kunzelmann K
et al.
A Bartter's syndrome mutation of ROMK1 exerts dominant negative effects on K(+) conductance.
Cell. Physiol. Biochem.,
2000
, 10 (117-24).
914
Liu Y
et al.
The human inward rectifier K(+) channel subunit kir5.1 (KCNJ16) maps to chromosome 17q25 and is expressed in kidney and pancreas.
Cytogenet. Cell Genet.,
2000
, 90 (60-3).
915
Wald H
Regulation of the ROMK potassium channel in the kidney.
Exp. Nephrol.,
1999 May-Jun
, 7 (201-6).
916
Spassova M
et al.
Tuning the voltage dependence of tetraethylammonium block with permeant ions in an inward-rectifier K+ channel.
J. Gen. Physiol.,
1999
Sep
, 114 (415-26).
917
Jin W
et al.
Synthesis of a stable form of tertiapin: a high-affinity inhibitor for inward-rectifier K+ channels.
Biochemistry,
1999
Oct
26
, 38 (14286-93).
918
Jin W
et al.
Mechanisms of inward-rectifier K+ channel inhibition by tertiapin-Q.
Biochemistry,
1999
Oct
26
, 38 (14294-301).
919
Sabirov RZ
et al.
Na(+) sensitivity of ROMK1 K(+) channel: role of the Na(+)/H(+) antiporter.
J. Membr. Biol.,
1999
Nov
1
, 172 (67-76).
920
Bannister JP
et al.
The effects of oxidizing and cysteine-reactive reagents on the inward rectifier potassium channels Kir2.3 and Kir1.1.
Pflugers Arch.,
1999
Nov
, 438 (868-78).
921
Flagg TP
et al.
A mutation linked with Bartter's syndrome locks Kir 1.1a (ROMK1) channels in a closed state.
J. Gen. Physiol.,
1999
Nov
, 114 (685-700).
922
Liou HH
et al.
Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism.
Proc. Natl. Acad. Sci. U.S.A.,
1999
May
11
, 96 (5820-5).
923
Beesley AH
et al.
Splicing of a retained intron within ROMK K+ channel RNA generates a novel set of isoforms in rat kidney.
Am. J. Physiol.,
1999
Mar
, 276 (C585-92).
924
Konrad M
et al.
Prenatal and postnatal management of hyperprostaglandin E syndrome after genetic diagnosis from amniocytes.
Pediatrics,
1999
Mar
, 103 (678-83).
925
Zolotnitskaya A
et al.
Developmental expression of ROMK in rat kidney.
Am. J. Physiol.,
1999
Jun
, 276 (F825-36).
926
Bhandari S
The pathophysiological and molecular basis of Bartter's and Gitelman's syndromes.
,
1999
Jul
, 75 (391-6).
927
Küst BM
et al.
Regulation of K+ channel mRNA expression by stimulation of adenosine A2a-receptors in cultured rat microglia.
Glia,
1999
Jan
15
, 25 (120-30).
928
Pearson WL
et al.
Expression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver.
J. Physiol. (Lond.),
1999
Feb
1
, 514 ( Pt 3) (639-53).
929
Schulte U
et al.
pH gating of ROMK (K(ir)1.1) channels: control by an Arg-Lys-Arg triad disrupted in antenatal Bartter syndrome.
Proc. Natl. Acad. Sci. U.S.A.,
1999
Dec
21
, 96 (15298-303).
930
Nakamura S
et al.
NH4+ secretion in inner medullary collecting duct in potassium deprivation: role of colonic H+-K+-ATPase.
Kidney Int.,
1999
Dec
, 56 (2160-7).
931
Vantyghem MC
et al.
[Bartter's syndromes]
Ann. Endocrinol. (Paris),
1999
Dec
, 60 (465-72).
932
Wang W
Regulation of the ROMK channel: interaction of the ROMK with associate proteins.
Am. J. Physiol.,
1999
Dec
, 277 (F826-31).
933
Liu X
et al.
ATP-dependent activation of K(Ca) and ROMK-type K(ATP) channels in human submandibular gland ductal cells.
J. Biol. Chem.,
1999
Aug
27
, 274 (25121-9).
934
Brejon M
et al.
Processing and transport of ROMK1 channel is temperature-sensitive.
Biochem. Biophys. Res. Commun.,
1999
Aug
2
, 261 (364-71).
935
Choe H
et al.
Structural determinants of gating in inward-rectifier K+ channels.
Biophys. J.,
1999
Apr
, 76 (1988-2003).
936
Thakker RV
Chloride channels in renal disease.
Adv. Nephrol. Necker Hosp.,
1999
, 29 (289-98).
937
Jin W
et al.
A novel high-affinity inhibitor for inward-rectifier K+ channels.
Biochemistry,
1998
Sep
22
, 37 (13291-9).
938
Derst C
et al.
A hyperprostaglandin E syndrome mutation in Kir1.1 (renal outer medullary potassium) channels reveals a crucial residue for channel function in Kir1.3 channels.
J. Biol. Chem.,
1998
Sep
11
, 273 (23884-91).
939
Hebert SC
Roles of Na-K-2Cl and Na-Cl cotransporters and ROMK potassium channels in urinary concentrating mechanism.
Am. J. Physiol.,
1998
Sep
, 275 (F325-7).
940
MacGregor GG
et al.
Partially active channels produced by PKA site mutation of the cloned renal K+ channel, ROMK2 (kir1.2).
Am. J. Physiol.,
1998
Sep
, 275 (F415-22).
941
Gribble FM
et al.
Mechanism of cloned ATP-sensitive potassium channel activation by oleoyl-CoA.
J. Biol. Chem.,
1998
Oct
9
, 273 (26383-7).
942
Imredy JP
et al.
A snake toxin inhibitor of inward rectifier potassium channel ROMK1.
Biochemistry,
1998
Oct
20
, 37 (14867-74).
943
Brazier SP
et al.
Secondary structure analysis of the putative membrane-associated domains of the inward rectifier K+ channel ROMK1.
Biochem. J.,
1998
Oct
15
, 335 ( Pt 2) (375-80).
944
Kohda Y
et al.
Localization of the ROMK potassium channel to the apical membrane of distal nephron in rat kidney.
Kidney Int.,
1998
Oct
, 54 (1214-23).
945
Choe H
et al.
Permeation and gating of an inwardly rectifying potassium channel. Evidence for a variable energy well.
J. Gen. Physiol.,
1998
Oct
, 112 (433-46).
946
Mouri T
et al.
Assignment of mouse inwardly rectifying potassium channel Kcnj16 to the distal region of mouse chromosome 11.
Genomics,
1998
Nov
15
, 54 (181-2).
947
Krapivinsky G
et al.
A novel inward rectifier K+ channel with unique pore properties.
Neuron,
1998
May
, 20 (995-1005).
948
Oliver D
et al.
Interaction of permeant and blocking ions in cloned inward-rectifier K+ channels.
Biophys. J.,
1998
May
, 74 (2318-26).
949
Lopatin AN
et al.
A novel crystallization method for visualizing the membrane localization of potassium channels.
Biophys. J.,
1998
May
, 74 (2159-70).
950
Frindt G
et al.
Dissociation of K channel density and ROMK mRNA in rat cortical collecting tubule during K adaptation.
Am. J. Physiol.,
1998
Mar
, 274 (F525-31).
951
Ruknudin A
et al.
Novel subunit composition of a renal epithelial KATP channel.
J. Biol. Chem.,
1998
Jun
5
, 273 (14165-71).
952
Beesley AH
et al.
Regulation of distal nephron K+ channels (ROMK) mRNA expression by aldosterone in rat kidney.
J. Physiol. (Lond.),
1998
Jun
15
, 509 ( Pt 3) (629-34).
953
Schwalbe RA
et al.
Functional consequences of ROMK mutants linked to antenatal Bartter's syndrome and implications for treatment.
Hum. Mol. Genet.,
1998
Jun
, 7 (975-80).
954
Thakker RV
The role of renal chloride channel mutations in kidney stone disease and nephrocalcinosis.
Curr. Opin. Nephrol. Hypertens.,
1998
Jul
, 7 (385-8).
955
Sabirov RZ
et al.
Probing the water permeability of ROMK1 and amphotericin B channels using Xenopus oocytes.
Biochim. Biophys. Acta,
1998
Jan
5
, 1368 (19-26).
956
Ho K
The ROMK-cystic fibrosis transmembrane conductance regulator connection: new insights into the relationship between ROMK and cystic fibrosis transmembrane conductance regulator channels.
Curr. Opin. Nephrol. Hypertens.,
1998
Jan
, 7 (49-58).
957
Antes LM
et al.
Hypokalemia and the pathology of ion transport molecules.
Semin. Nephrol.,
1998
Jan
, 18 (31-45).
958
Vollmer M
et al.
Two novel mutations of the gene for Kir 1.1 (ROMK) in neonatal Bartter syndrome.
Pediatr. Nephrol.,
1998
Jan
, 12 (69-71).
959
Pearce SH
Straightening out the renal tubule: advances in the molecular basis of the inherited tubulopathies.
,
1998
Jan
, 91 (5-12).
960
Macica CM
et al.
Role of the NH2 terminus of the cloned renal K+ channel, ROMK1, in arachidonic acid-mediated inhibition.
Am. J. Physiol.,
1998
Jan
, 274 (F175-81).
961
Chraïbi A
et al.
Protease modulation of the activity of the epithelial sodium channel expressed in Xenopus oocytes.
J. Gen. Physiol.,
1998
Jan
, 111 (127-38).
962
Chen H
et al.
Cyclosporin A selectively reduces the functional expression of Kir2.1 potassium channels in Xenopus oocytes.
FEBS Lett.,
1998
Feb
6
, 422 (307-10).
963
Huang CL
et al.
Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma.
Nature,
1998
Feb
19
, 391 (803-6).
964
Schneider SW
et al.
Molecular weights of individual proteins correlate with molecular volumes measured by atomic force microscopy.
Pflugers Arch.,
1998
Feb
, 435 (362-7).
965
Schulte U
et al.
pH-dependent gating of ROMK (Kir1.1) channels involves conformational changes in both N and C termini.
J. Biol. Chem.,
1998
Dec
18
, 273 (34575-9).
966
Derst C
et al.
Partial gene structure and assignment to chromosome 2q37 of the human inwardly rectifying K+ channel (Kir7.1) gene (KCNJ13).
Genomics,
1998
Dec
15
, 54 (560-3).
967
Haris PI
Synthetic peptide fragments as probes for structure determination of potassium ion-channel proteins.
Biosci. Rep.,
1998
Dec
, 18 (299-312).
968
Cooper GJ
et al.
Effect of PCMBS on CO2 permeability of Xenopus oocytes expressing aquaporin 1 or its C189S mutant.
Am. J. Physiol.,
1998
Dec
, 275 (C1481-6).
969
Cluzeaud F
et al.
Expression of TWIK-1, a novel weakly inward rectifying potassium channel in rat kidney.
Am. J. Physiol.,
1998
Dec
, 275 (C1602-9).
970
McNicholas CM
et al.
pH-dependent modulation of the cloned renal K+ channel, ROMK.
Am. J. Physiol.,
1998
Dec
, 275 (F972-81).
971
Feldmann D
et al.
Large deletion of the 5' end of the ROMK1 gene causes antenatal Bartter syndrome.
J. Am. Soc. Nephrol.,
1998
Dec
, 9 (2357-9).
972
Bhandari S
et al.
Inward rectifier renal potassium channel (ROMK), the low-conductance channels for potassium secretion.
Nephrol. Dial. Transplant.,
1998
Dec
, 13 (3019-23).
973
Ali S
et al.
The A kinase anchoring protein is required for mediating the effect of protein kinase A on ROMK1 channels.
Proc. Natl. Acad. Sci. U.S.A.,
1998
Aug
18
, 95 (10274-8).
974
Wald H
et al.
Differential regulation of ROMK expression in kidney cortex and medulla by aldosterone and potassium.
Am. J. Physiol.,
1998
Aug
, 275 (F239-45).
975
Spassova M
et al.
Coupled ion movement underlies rectification in an inward-rectifier K+ channel.
J. Gen. Physiol.,
1998
Aug
, 112 (211-21).
976
Koster JC
et al.
Assembly of ROMK1 (Kir 1.1a) inward rectifier K+ channel subunits involves multiple interaction sites.
Biophys. J.,
1998
Apr
, 74 (1821-9).
977
Károlyi L
et al.
The molecular genetic approach to "Bartter's syndrome".
J. Mol. Med.,
1998
Apr
, 76 (317-25).
978
Gosset P
et al.
A new inward rectifier potassium channel gene (KCNJ15) localized on chromosome 21 in the Down syndrome chromosome region 1 (DCR1).
Genomics,
1997
Sep
1
, 44 (237-41).
979
Palmer LG
et al.
Is the secretory K channel in the rat CCT ROMK?
Am. J. Physiol.,
1997
Sep
, 273 (F404-10).
980
Schwalbe RA
et al.
Mapping the kidney potassium channel ROMK1. Glycosylation of the pore signature sequence and the COOH terminus.
J. Biol. Chem.,
1997
Oct
3
, 272 (25217-23).
981
Lundgren DW
et al.
Gestational changes in the uterine expression of an inwardly rectifying K+ channel, ROMK.
Proc. Soc. Exp. Biol. Med.,
1997
Oct
, 216 (57-64).
982
Choe H
et al.
A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating.
Am. J. Physiol.,
1997
Oct
, 273 (F516-29).
983
Tada Y
et al.
Assignment of the glial inwardly rectifying potassium channel KAB-2/Kir4.1 (Kcnj10) gene to the distal region of mouse chromosome 1.
Genomics,
1997
Nov
1
, 45 (629-30).
984
Xu JZ
et al.
Localization of the ROMK protein on apical membranes of rat kidney nephron segments.
Am. J. Physiol.,
1997
Nov
, 273 (F739-48).
985
McNicholas CM
et al.
A functional CFTR-NBF1 is required for ROMK2-CFTR interaction.
Am. J. Physiol.,
1997
Nov
, 273 (F843-8).
986
Bock JH
et al.
Nucleotide sequence analysis of the human KCNJ1 potassium channel locus.
Gene,
1997
Mar
25
, 188 (9-16).
987
Stanton BA
Cystic fibrosis transmembrane conductance regulator (CFTR) and renal function.
Wien. Klin. Wochenschr.,
1997
Jun
27
, 109 (457-64).
988
Rossier BC
Lose salt and gain a friend! A tribute to Gerhard Giebisch.
Wien. Klin. Wochenschr.,
1997
Jun
27
, 109 (504-6).
989
Hebert SC
et al.
Structure and function of the low conductance KATP channel, ROMK.
Wien. Klin. Wochenschr.,
1997
Jun
27
, 109 (471-6).
990
Lu Z
et al.
Purification, characterization, and synthesis of an inward-rectifier K+ channel inhibitor from scorpion venom.
Biochemistry,
1997
Jun
10
, 36 (6936-40).
991
Löffler K
et al.
Cation permeation and blockade of ROMK1, a cloned renal potassium channel.
Pflugers Arch.,
1997
Jun
, 434 (151-8).
992
Shuck ME
et al.
Cloning and characterization of two K+ inward rectifier (Kir) 1.1 potassium channel homologs from human kidney (Kir1.2 and Kir1.3).
J. Biol. Chem.,
1997
Jan
3
, 272 (586-93).
993
Derst C
et al.
Mutations in the ROMK gene in antenatal Bartter syndrome are associated with impaired K+ channel function.
Biochem. Biophys. Res. Commun.,
1997
Jan
23
, 230 (641-5).
994
Hugnot JP
et al.
The human inward rectifying K+ channel Kir 2.2 (KCNJ12) gene: gene structure, assignment to chromosome 17p11.1, and identification of a simple tandem repeat polymorphism.
Genomics,
1997
Jan
1
, 39 (113-6).
995
Gribble FM
et al.
Properties of cloned ATP-sensitive K+ currents expressed in Xenopus oocytes.
J. Physiol. (Lond.),
1997
Jan
1
, 498 ( Pt 1) (87-98).
996
997
Ben-Efraim I
et al.
The structure and organization of synthetic putative membranous segments of ROMK1 channel in phospholipid membranes.
Biophys. J.,
1997
Jan
, 72 (85-96).
998
Isomoto S
et al.
Inwardly rectifying potassium channels: their molecular heterogeneity and function.
Jpn. J. Physiol.,
1997
Feb
, 47 (11-39).
999
Oberleithner H
et al.
Structural activity of a cloned potassium channel (ROMK1) monitored with the atomic force microscope: the "molecular-sandwich" technique.
Proc. Natl. Acad. Sci. U.S.A.,
1997
Dec
9
, 94 (14144-9).
1000
Mennitt PA
et al.
Localization of ROMK channels in the rat kidney.
J. Am. Soc. Nephrol.,
1997
Dec
, 8 (1823-30).
1001
Shyng S
et al.
Control of rectification and gating of cloned KATP channels by the Kir6.2 subunit.
J. Gen. Physiol.,
1997
Aug
, 110 (141-53).
1002
Namba N
et al.
The inwardly rectifying potassium channel subunit Kir2.2v (KCNJN1) maps to 17p11.2-->p11.1.
Cytogenet. Cell Genet.,
1997
, 79 (85-7).
1003
Schwalbe RA
et al.
Novel sites of N-glycosylation in ROMK1 reveal the putative pore-forming segment H5 as extracellular.
J. Biol. Chem.,
1996
Sep
27
, 271 (24201-6).
1004
Henry P
et al.
Protein kinase C inhibition of cloned inward rectifier (HRK1/KIR2.3) K+ channels expressed in Xenopus oocytes.
J. Physiol. (Lond.),
1996
Sep
15
, 495 ( Pt 3) (681-8).
1005
Macica CM
et al.
Arachidonic acid inhibits activity of cloned renal K+ channel, ROMK1.
Am. J. Physiol.,
1996
Sep
, 271 (F588-94).
1006
Simon DB
et al.
Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK.
Nat. Genet.,
1996
Oct
, 14 (152-6).
1007
Tinker A
et al.
Regions responsible for the assembly of inwardly rectifying potassium channels.
Cell,
1996
Nov
29
, 87 (857-68).
1008
Ben-Efraim I
et al.
Secondary structure, membrane localization, and coassembly within phospholipid membranes of synthetic segments derived from the N- and C-termini regions of the ROMK1 K+ channel.
Protein Sci.,
1996
Nov
, 5 (2287-97).
1009
Kubo Y
et al.
A weakly inward rectifying potassium channel of the salmon brain. Glutamate 179 in the second transmembrane domain is insufficient for strong rectification.
J. Biol. Chem.,
1996
Jun
28
, 271 (15729-35).
1010
McNicholas CM
et al.
Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator.
Proc. Natl. Acad. Sci. U.S.A.,
1996
Jul
23
, 93 (8083-8).
1011
Doi T
et al.
Extracellular K+ and intracellular pH allosterically regulate renal Kir1.1 channels.
J. Biol. Chem.,
1996
Jul
19
, 271 (17261-6).
1012
Kofuji P
et al.
A unique P-region residue is required for slow voltage-dependent gating of a G protein-activated inward rectifier K+ channel expressed in Xenopus oocytes.
J. Physiol. (Lond.),
1996
Feb
1
, 490 ( Pt 3) (633-45).
1013
Kondo C
et al.
Cloning and functional expression of a novel isoform of ROMK inwardly rectifying ATP-dependent K+ channel, ROMK6 (Kir1.1f).
FEBS Lett.,
1996
Dec
9
, 399 (122-6).
1014
Zhou H
et al.
Mutations in the pore region of ROMK enhance Ba2+ block.
Am. J. Physiol.,
1996
Dec
, 271 (C1949-56).
1015
Henderson RM
et al.
Imaging ROMK1 inwardly rectifying ATP-sensitive K+ channel protein using atomic force microscopy.
Proc. Natl. Acad. Sci. U.S.A.,
1996
Aug
6
, 93 (8756-60).
1016
Fakler B
et al.
Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH.
EMBO J.,
1996
Aug
15
, 15 (4093-9).
1017
McNicholas CM
et al.
Molecular site for nucleotide binding on an ATP-sensitive renal K+ channel (ROMK2).
Am. J. Physiol.,
1996
Aug
, 271 (F275-85).
1018
Kiehn J
et al.
Mapping the block of a cloned human inward rectifier potassium channel by dofetilide.
Mol. Pharmacol.,
1996
Aug
, 50 (380-7).
1019
Xu ZC
et al.
Phosphorylation of the ATP-sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP-dependent protein kinase.
J. Biol. Chem.,
1996
Apr
19
, 271 (9313-9).
1020
Oberleithner H
et al.
Viewing the renal epithelium with the atomic force microscope.
Kidney Blood Press. Res.,
1996
, 19 (142-7).
1021
Lu Z
et al.
Probing a potassium channel pore with an engineered protonatable site.
Biochemistry,
1995
Oct
10
, 34 (13133-8).
1022
Hebert SC
An ATP-regulated, inwardly rectifying potassium channel from rat kidney (ROMK).
Kidney Int.,
1995
Oct
, 48 (1010-6).
1023
Doi T
et al.
Subunit-specific inhibition of inward-rectifier K+ channels by quinidine.
FEBS Lett.,
1995
Nov
20
, 375 (193-6).
1024
Taglialatela M
et al.
C-terminus determinants for Mg2+ and polyamine block of the inward rectifier K+ channel IRK1.
EMBO J.,
1995
Nov
15
, 14 (5532-41).
1025
Tsai TD
et al.
Intracellular H+ inhibits a cloned rat kidney outer medulla K+ channel expressed in Xenopus oocytes.
Am. J. Physiol.,
1995
May
, 268 (C1173-8).
1026
Inagaki N
et al.
Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart.
J. Biol. Chem.,
1995
Mar
17
, 270 (5691-4).
1027
Schwalbe RA
et al.
Potassium channel structure and function as reported by a single glycosylation sequon.
J. Biol. Chem.,
1995
Jun
23
, 270 (15336-40).
1028
Lee WS
et al.
ROMK inwardly rectifying ATP-sensitive K+ channel. I. Expression in rat distal nephron segments.
Am. J. Physiol.,
1995
Jun
, 268 (F1124-31).
1029
Boim MA
et al.
ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms.
Am. J. Physiol.,
1995
Jun
, 268 (F1132-40).
1030
Takumi T
et al.
A novel ATP-dependent inward rectifier potassium channel expressed predominantly in glial cells.
J. Biol. Chem.,
1995
Jul
7
, 270 (16339-46).
1031
Dascal N
et al.
Inhibition of function in Xenopus oocytes of the inwardly rectifying G-protein-activated atrial K channel (GIRK1) by overexpression of a membrane-attached form of the C-terminal tail.
Proc. Natl. Acad. Sci. U.S.A.,
1995
Jul
18
, 92 (6758-62).
1032
Chepilko S
et al.
Permeation and gating properties of a cloned renal K+ channel.
Am. J. Physiol.,
1995
Feb
, 268 (C389-401).
1033
Duprat F
et al.
Susceptibility of cloned K+ channels to reactive oxygen species.
Proc. Natl. Acad. Sci. U.S.A.,
1995
Dec
5
, 92 (11796-800).
1034
Choe S
et al.
Three distinct structural environments of a transmembrane domain in the inwardly rectifying potassium channel ROMK1 defined by perturbation.
Proc. Natl. Acad. Sci. U.S.A.,
1995
Dec
19
, 92 (12046-9).
1035
Glowatzki E
et al.
Subunit-dependent assembly of inward-rectifier K+ channels.
Proc. Biol. Sci.,
1995
Aug
22
, 261 (251-61).
1036
Krishnan SN
et al.
Isolation and chromosomal localization of a human ATP-regulated potassium channel.
Hum. Genet.,
1995
Aug
, 96 (155-60).
1037
Wible BA
et al.
Gating of inwardly rectifying K+ channels localized to a single negatively charged residue.
Nature,
1994
Sep
15
, 371 (246-9).
1038
Lu Z
et al.
Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel.
Nature,
1994
Sep
15
, 371 (243-6).
1039
Lu Z
et al.
A conductance maximum observed in an inward-rectifier potassium channel.
J. Gen. Physiol.,
1994
Sep
, 104 (477-86).
1040
Lesage F
et al.
Cloning provides evidence for a family of inward rectifier and G-protein coupled K+ channels in the brain.
FEBS Lett.,
1994
Oct
10
, 353 (37-42).
1041
Taglialatela M
et al.
Specification of pore properties by the carboxyl terminus of inwardly rectifying K+ channels.
Science,
1994
May
6
, 264 (844-7).
1042
Nichols CG
et al.
Mg(2+)-dependent inward rectification of ROMK1 potassium channels expressed in Xenopus oocytes.
J. Physiol. (Lond.),
1994
May
1
, 476 (399-409).
1043
Yano H
et al.
Alternative splicing of human inwardly rectifying K+ channel ROMK1 mRNA.
Mol. Pharmacol.,
1994
May
, 45 (854-60).
1044
Koyama H
et al.
Molecular cloning, functional expression and localization of a novel inward rectifier potassium channel in the rat brain.
FEBS Lett.,
1994
Mar
21
, 341 (303-7).
1045
Zhou H
et al.
Primary structure and functional properties of an epithelial K channel.
Am. J. Physiol.,
1994
Mar
, 266 (C809-24).
1046
Morishige K
et al.
Molecular cloning and functional expression of a novel brain-specific inward rectifier potassium channel.
FEBS Lett.,
1994
Jun
13
, 346 (251-6).
1047
Tang W
et al.
Cloning a novel human brain inward rectifier potassium channel and its functional expression in Xenopus oocytes.
FEBS Lett.,
1994
Jul
18
, 348 (239-43).
1048
Kenna S
et al.
Differential expression of the inwardly-rectifying K-channel ROMK1 in rat brain.
Brain Res. Mol. Brain Res.,
1994
Jul
, 24 (353-6).
1049
Bradley JC
et al.
Potassium channels: a computer prediction of structure and selectivity.
Protein Eng.,
1994
Jul
, 7 (859-62).
1050
Fakler B
et al.
A structural determinant of differential sensitivity of cloned inward rectifier K+ channels to intracellular spermine.
FEBS Lett.,
1994
Dec
19
, 356 (199-203).
1051
McNicholas CM
et al.
Regulation of ROMK1 K+ channel activity involves phosphorylation processes.
Proc. Natl. Acad. Sci. U.S.A.,
1994
Aug
16
, 91 (8077-81).
1052
Makhina EN
et al.
Cloning and expression of a novel human brain inward rectifier potassium channel.
J. Biol. Chem.,
1994
Aug
12
, 269 (20468-74).
1053
Edwards G
et al.
Levcromakalim may induce a voltage-independent K-current in rat portal veins by modifying the gating properties of the delayed rectifier.
Br. J. Pharmacol.,
1993
Nov
, 110 (1037-48).
1054
Kubo Y
et al.
Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel.
Nature,
1993
Aug
26
, 364 (802-6).