Channelpedia

PubMed 16775035


Referenced in: none

Automatically associated channels: Kir1.1



Title: WNK1 affects surface expression of the ROMK potassium channel independent of WNK4.

Authors: Georgina Cope, Meena Murthy, Amir P Golbang, Abbas Hamad, Che-Hsiung Liu, Alan W Cuthbert, Kevin M O'Shaughnessy

Journal, date & volume: J. Am. Soc. Nephrol., 2006 Jul , 17, 1867-74

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/16775035


Abstract
The WNK (with no lysine kinase) kinases are a novel class of serine/threonine kinases that lack a characteristic lysine residue for ATP docking. Both WNK1 and WNK4 are expressed in the mammalian kidney, and mutations in either can cause the rare familial syndrome of hypertension and hyperkalemia (Gordon syndrome, or pseudohypoaldosteronism type 2). The molecular basis for the action of WNK4 is through alteration in the membrane expression of the NaCl co-transporter (NCCT) and the renal outer-medullary K channel KCNJ1 (ROMK). The actions of WNK1 are less well defined, and evidence to date suggests that it can affect NCCT expression but only in the presence of WNK4. The results of co-expressing WNK1 with ROMK in Xenopus oocytes are reported for the first time. These studies show that WNK1 is able to suppress total current directly through ROMK by causing a marked reduction in its surface expression. The effect is mimicked by a kinase-dead mutant of WNK1 (368D > A), suggesting that it is not dependent on its catalytic activity. Study of the time course of ROMK expression further suggests that WNK1 accelerates trafficking of ROMK from the membrane, and this effect seems to be dynamin dependent. Using fragments of full-length WNK1, it also is shown that the effect depends on residues in the middle section of the protein (502 to 1100 WNK1) that contains the acidic motif. Together, these findings emphasize that the molecular mechanisms that underpin WNK1 regulation of ROMK expression are distinct from those that affect NCCT expression.