Channelpedia

PubMed 10552015


Referenced in: none

Automatically associated channels: Kir1.1



Title: Na(+) sensitivity of ROMK1 K(+) channel: role of the Na(+)/H(+) antiporter.

Authors: R Z Sabirov, R R Azimov, Y Ando-Akatsuka, T Miyoshi, Y Okada

Journal, date & volume: J. Membr. Biol., 1999 Nov 1 , 172, 67-76

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/10552015


Abstract
To examine the extracellular Na(+) sensitivity of a renal inwardly rectifying K(+) channel, we performed electrophysiological experiments on Xenopus oocytes or a human kidney cell line, HEK293, in which we had expressed the cloned renal K(+) channel, ROMK1 (Kir1. 1). When extracellular Na(+) was removed, the whole-cell ROMK1 currents were markedly suppressed in both the oocytes and HEK293 cells. Single-channel ROMK1 activities recorded in the cell-attached patch on the oocyte were not affected by removal of Na(+) from the pipette solution. However, macro-patch ROMK1 currents recorded on the oocyte were significantly suppressed by Na(+) removal from the bath solution. A blocker of Na(+)/H(+) antiporters, amiloride, largely inhibited the Na(+) removal-induced suppression of whole-cell ROMK1 currents in the oocytes. The pH-insensitive K80M mutant of ROMK1 was much less sensitive to Na(+) removal. Na(+) removal was found to induce a significant decrease in intracellular pH in the oocytes using H(+)-selective microelectrodes. Coexpression of ROMK1 with NHE3, which is a Na(+)/H(+) antiporter isoform of the kidney apical membrane, conferred increased sensitivity of ROMK1 channels to extracellular Na(+) in both the oocytes and HEK293 cells. Thus, it is concluded that the ROMK1 channel is regulated indirectly by extracellular Na(+), and that the interaction between NHE transporter and ROMK1 channel appears to be involved in the mechanism of Na(+) sensitivity of ROMK1 channel via regulating intracellular pH.