PubMed 18497752
Referenced in: none
Automatically associated channels: Kir1.1 , Kir6.2 , Slo1
Title: A mutation (R826W) in nucleotide-binding domain 1 of ABCC8 reduces ATPase activity and causes transient neonatal diabetes.
Authors: Heidi de Wet, Peter Proks, Mathilde Lafond, Jussi Aittoniemi, Mark S P Sansom, Sarah E Flanagan, Ewan R Pearson, Andrew T Hattersley, Frances M Ashcroft
Journal, date & volume: EMBO Rep., 2008 Jul , 9, 648-54
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/18497752
Abstract
Activating mutations in the pore-forming Kir6.2 (KCNJ11) and regulatory sulphonylurea receptor SUR1 (ABCC8) subunits of the K(ATP) channel are a common cause of transient neonatal diabetes mellitus (TNDM). We identified a new TNDM mutation (R826W) in the first nucleotide-binding domain (NBD1) of SUR1. The mutation was found in a region that heterodimerizes with NBD2 to form catalytic site 2. Functional analysis showed that this mutation decreases MgATP hydrolysis by purified maltose-binding protein MBP-NBD1 fusion proteins. Inhibition of ATP hydrolysis by MgADP or BeF was not changed. The results indicate that the ATPase cycle lingers in the post-hydrolytic MgADP.P(i)-bound state, which is associated with channel activation. The extent of MgADP-dependent activation of K(ATP) channel activity was unaffected by the R826W mutation, but the time course of deactivation was slowed. Channel inhibition by MgATP was reduced, leading to an increase in resting whole-cell currents. In pancreatic beta cells, this would lead to less insulin secretion and thereby diabetes.