TREK1
90 literature references associated to TREK1
1
Jorgensen C
et al.
Lateral Fenestrations in K(+)-Channels Explored Using Molecular Dynamics Simulations.
Mol. Pharm.,
2016
May
26
, ().
2
Wiedmann F
et al.
Therapeutic targeting of two-pore-domain potassium (K2P) channels in the cardiovascular system.
Clin. Sci.,
2016
May
1
, 130 (643-50).
3
Veale EL
et al.
Aristolochic acid, a plant extract used in the treatment of pain and linked to Balkan endemic nephropathy, is a regulator of K2P channels.
Br. J. Pharmacol.,
2016
May
, 173 (1639-52).
4
Woo J
et al.
Inhibition of TREK-2 K(+) channels by PI(4,5)P2: an intrinsic mode of regulation by intracellular ATP via phosphatidylinositol kinase.
Pflugers Arch.,
2016
Jun
9
, ().
5
McClenaghan C
et al.
Polymodal activation of the TREK-2 K2P channel produces structurally distinct open states.
J. Gen. Physiol.,
2016
Jun
, 147 (497-505).
6
Ghatak S
et al.
Lactate modulates the intracellular pH sensitivity of human TREK1 channels.
Pflugers Arch.,
2016
Feb
3
, ().
7
Banerjee A
et al.
L-Lactate mediates neuroprotection against ischaemia by increasing TREK1 channel expression in rat hippocampal astrocytes in vitro.
J. Neurochem.,
2016
Apr
9
, ().
8
Lengyel M
et al.
Formation of Functional Heterodimers by TREK-1 and TREK-2 Two-pore Domain Potassium Channel Subunits.
J. Biol. Chem.,
2016
Apr
28
, ().
9
Levitz J
et al.
Heterodimerization within the TREK channel subfamily produces a diverse family of highly regulated potassium channels.
Proc. Natl. Acad. Sci. U.S.A.,
2016
Apr
12
, 113 (4194-9).
11
Weller J
et al.
pH-Sensitive K(+) Currents and Properties of K2P Channels in Murine Hippocampal Astrocytes.
Adv Protein Chem Struct Biol,
2016
, 103 (263-94).
12
Brohawn SG
How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2.
Ann. N. Y. Acad. Sci.,
2015
Sep
, 1352 (20-32).
13
Ghatak S
et al.
Ischaemic concentrations of lactate increase TREK1 channel activity by interacting with a single histidine residue in the carboxy terminal domain.
J. Physiol. (Lond.),
2015
Oct
7
, ().
14
Lee AK
et al.
Arginine Vasopressin Potentiates the Stimulatory Action of CRH on Pituitary Corticotropes via a Protein Kinase C-Dependent Reduction of the Background TREK-1 Current.
Endocrinology,
2015
Oct
, 156 (3661-72).
15
Bodnar M
et al.
The potassium current carried by TREK-1 channels in rat cardiac ventricular muscle.
Pflugers Arch.,
2015
May
, 467 (1069-79).
16
Ehling P
et al.
The CNS under pathophysiologic attack--examining the role of K₂p channels.
Pflugers Arch.,
2015
May
, 467 (959-72).
17
MacKenzie G
et al.
Two-pore domain potassium channels enable action potential generation in the absence of voltage-gated potassium channels.
Pflugers Arch.,
2015
May
, 467 (989-99).
18
Kim D
et al.
Role of K₂p channels in stimulus-secretion coupling.
Pflugers Arch.,
2015
May
, 467 (1001-11).
19
Mathie A
et al.
Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain.
Pflugers Arch.,
2015
May
, 467 (931-43).
20
Bista P
et al.
The role of two-pore-domain background K⁺ (K₂p) channels in the thalamus.
Pflugers Arch.,
2015
May
, 467 (895-905).
21
Bandulik S
et al.
Two-pore domain potassium channels in the adrenal cortex.
Pflugers Arch.,
2015
May
, 467 (1027-42).
22
Göb E
et al.
The two-pore domain potassium channel KCNK5 deteriorates outcome in ischemic neurodegeneration.
Pflugers Arch.,
2015
May
, 467 (973-87).
23
Dong YY
et al.
K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac.
Science,
2015
Mar
13
, 347 (1256-9).
24
Lin DH
et al.
The Role of the Two-Pore Domain Potassium Channel TREK-1 in the Therapeutic Effects of Escitalopram in a Rat Model of Poststroke Depression.
CNS Neurosci Ther,
2015
Jun
, 21 (504-12).
25
Zhang GM
et al.
Prognostic significance of the TREK-1 K2P potassium channels in prostate cancer.
Oncotarget,
2015
Jul
30
, 6 (18460-8).
26
Rivas-Ramírez P
et al.
Muscarinic modulation of TREK currents in mouse sympathetic superior cervical ganglion neurons.
Eur. J. Neurosci.,
2015
Jul
, 42 (1797-807).
27
Bista P
et al.
Differential phospholipase C-dependent modulation of TASK and TREK two-pore domain K+ channels in rat thalamocortical relay neurons.
J. Physiol. (Lond.),
2015
Jan
1
, 593 (127-44).
28
Wang Y
et al.
Regulation of Trek1 expression in nasal mucosa with allergic rhinitis by specific immunotherapy.
Cell Biochem. Funct.,
2015
Jan
, 33 (23-8).
29
Chen C
et al.
Effects of fluoxetine on protein expression of potassium ion channels in the brain of chronic mild stress rats.
Acta Pharm Sin B,
2015
Jan
, 5 (55-61).
30
Congiu C
et al.
The role of the potassium channel gene KCNK2 in major depressive disorder.
Psychiatry Res,
2015
Feb
28
, 225 (489-92).
31
Veyssiere J
et al.
Retroinverso analogs of spadin display increased antidepressant effects.
Psychopharmacology (Berl.),
2015
Feb
, 232 (561-74).
32
Borsotto M
et al.
Targeting two-pore domain K(+) channels TREK-1 and TASK-3 for the treatment of depression: a new therapeutic concept.
Br. J. Pharmacol.,
2015
Feb
, 172 (771-84).
33
Pei HX
et al.
[The two pore notassium channel TREK-1 and its related diseases].
Sheng Li Ke Xue Jin Zhan,
2015
Dec
, 46 (468-72).
34
Zhuo RG
et al.
Insights into the stimulatory mechanism of 2-aminoethoxydiphenyl borate on TREK-2 potassium channel.
Neuroscience,
2015
Aug
6
, 300 (85-93).
35
Zhuo RG
et al.
The isoforms generated by alternative translation initiation adopt similar conformation in the selectivity filter in TREK-2.
J. Physiol. Biochem.,
2015
Aug
14
, ().
36
Schwartz ES
et al.
Nociceptive and inflammatory mediator upregulation in a mouse model of chronic prostatitis.
Pain,
2015
Aug
, 156 (1537-44).
37
Brune K
et al.
Pulmonary epithelial barrier function: some new players and mechanisms.
Am. J. Physiol. Lung Cell Mol. Physiol.,
2015
Apr
15
, 308 (L731-45).
38
Braun G
et al.
Differential sensitivity of TREK-1, TREK-2 and TRAAK background potassium channels to the polycationic dye ruthenium red.
Br. J. Pharmacol.,
2015
Apr
, 172 (1728-38).
39
Kim SH
et al.
Electrogenic transport and K(+) ion channel expression by the human endolymphatic sac epithelium.
Sci Rep,
2015
, 5 (18110).
40
Okada M
et al.
Increase in the titer of lentiviral vectors expressing potassium channels by current blockade during viral vector production.
BMC Neurosci,
2015
, 16 (30).
41
Jiang J
et al.
Trek1 contributes to maintaining nasal epithelial barrier integrity.
Sci Rep,
2015
, 5 (9191).
42
Schwingshackl A
et al.
TREK-1 Regulates Cytokine Secretion from Cultured Human Alveolar Epithelial Cells Independently of Cytoskeletal Rearrangements.
PLoS ONE,
2015
, 10 (e0126781).
43
Rivera-Pagán AF
et al.
Up-regulation of TREK-2 potassium channels in cultured astrocytes requires de novo protein synthesis: relevance to localization of TREK-2 channels in astrocytes after transient cerebral ischemia.
PLoS ONE,
2015
, 10 (e0125195).
44
Schmidt C
et al.
Inhibition of cardiac two-pore-domain K+ (K2P) channels--an emerging antiarrhythmic concept.
Eur. J. Pharmacol.,
2014
Sep
5
, 738 (250-5).
45
Comoglio Y
et al.
Phospholipase D2 specifically regulates TREK potassium channels via direct interaction and local production of phosphatidic acid.
Proc. Natl. Acad. Sci. U.S.A.,
2014
Sep
16
, 111 (13547-52).
46
Bond RC
et al.
Inhibition of a TREK-like K+ channel current by noradrenaline requires both β1- and β2-adrenoceptors in rat atrial myocytes.
Cardiovasc. Res.,
2014
Oct
1
, 104 (206-15).
47
Schwingshackl A
et al.
Deficiency of the two-pore-domain potassium channel TREK-1 promotes hyperoxia-induced lung injury.
Crit. Care Med.,
2014
Nov
, 42 (e692-701).
48
Henstock JR
et al.
Remotely Activated Mechanotransduction via Magnetic Nanoparticles Promotes Mineralization Synergistically With Bone Morphogenetic Protein 2: Applications for Injectable Cell Therapy.
Stem Cells Transl Med,
2014
Nov
, 3 (1363-74).
49
Xiao Z
et al.
Activation of neurotensin receptor 1 facilitates neuronal excitability and spatial learning and memory in the entorhinal cortex: beneficial actions in an Alzheimer's disease model.
J. Neurosci.,
2014
May
14
, 34 (7027-42).
50
Veale EL
et al.
Influence of the N terminus on the biophysical properties and pharmacology of TREK1 potassium channels.
Mol. Pharmacol.,
2014
May
, 85 (671-81).
51
Brohawn SG
et al.
Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels.
Proc. Natl. Acad. Sci. U.S.A.,
2014
Mar
4
, 111 (3614-9).
52
Schmidt C
et al.
Cardiac expression and atrial fibrillation-associated remodeling of K₂p2.1 (TREK-1) K⁺ channels in a porcine model.
Life Sci.,
2014
Mar
3
, 97 (107-15).
53
Rodrigues N
et al.
Synthesis and structure-activity relationship study of substituted caffeate esters as antinociceptive agents modulating the TREK-1 channel.
Eur J Med Chem,
2014
Mar
21
, 75 (391-402).
54
Tran VT
et al.
Mechanotransduction channels of the trabecular meshwork.
Curr. Eye Res.,
2014
Mar
, 39 (291-303).
55
Zappia KJ
et al.
Cold hypersensitivity increases with age in mice with sickle cell disease.
Pain,
2014
Jun
3
, ().
56
Retailleau K
et al.
Polycystins and partners: proposed role in mechanosensitivity.
J. Physiol. (Lond.),
2014
Jun
15
, 592 (2453-2471).
57
Bittner S
et al.
TREK-king the blood-brain-barrier.
J Neuroimmune Pharmacol,
2014
Jun
, 9 (293-301).
58
Lei Q
et al.
Response of the human detrusor to stretch is regulated by TREK-1, a two-pore-domain (K2P) mechano-gated potassium channel.
J. Physiol. (Lond.),
2014
Jul
15
, 592 (3013-30).
59
Tong L
et al.
Activation of K(2)P channel-TREK1 mediates the neuroprotection induced by sevoflurane preconditioning.
Br J Anaesth,
2014
Jul
, 113 (157-67).
60
Acosta C
et al.
TREK2 expressed selectively in IB4-binding C-fiber nociceptors hyperpolarizes their membrane potentials and limits spontaneous pain.
J. Neurosci.,
2014
Jan
22
, 34 (1494-509).
61
Gohlke BO
et al.
SuperPain--a resource on pain-relieving compounds targeting ion channels.
Nucleic Acids Res.,
2014
Jan
1
, 42 (D1107-12).
62
Lalo U
et al.
Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex.
PLoS Biol.,
2014
Jan
, 12 (e1001747).
63
Dey D
et al.
A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus.
Epilepsia,
2014
Feb
, 55 (203-13).
64
Shin HW
et al.
The inhibitory effects of bupivacaine, levobupivacaine, and ropivacaine on K2P (two-pore domain potassium) channel TREK-1.
J Anesth,
2014
Feb
, 28 (81-6).
65
Pereira V
et al.
Role of the TREK2 potassium channel in cold and warm thermosensation and in pain perception.
Pain,
2014
Dec
, 155 (2534-44).
66
Seyler C
et al.
Vernakalant activates human cardiac K(2P)17.1 background K(+) channels.
Biochem. Biophys. Res. Commun.,
2014
Aug
29
, 451 (415-20).
67
Benoist D
et al.
Systems approach to the study of stretch and arrhythmias in right ventricular failure induced in rats by monocrotaline.
Prog. Biophys. Mol. Biol.,
2014
Aug
, 115 (162-72).
68
Rinné S
et al.
A splice variant of the two-pore domain potassium channel TREK-1 with only one pore domain reduces the surface expression of full-length TREK-1 channels.
Pflugers Arch.,
2014
Aug
, 466 (1559-70).
69
Yang X
et al.
Functional study of TREK-1 potassium channels during rat heart development and cardiac ischemia using RNAi techniques.
J. Cardiovasc. Pharmacol.,
2014
Aug
, 64 (142-50).
70
Hund TJ
et al.
β(IV)-Spectrin regulates TREK-1 membrane targeting in the heart.
Cardiovasc. Res.,
2014
Apr
1
, 102 (166-75).
71
Lu L
et al.
Electrophysiology and pharmacology of tandem domain potassium channel TREK-1 related BDNF synthesis in rat astrocytes.
Naunyn Schmiedebergs Arch. Pharmacol.,
2014
Apr
, 387 (303-12).
72
Noriega-Navarro R
et al.
Novel TASK channels inhibitors derived from dihydropyrrolo[2,1-a]isoquinoline.
Neuropharmacology,
2014
Apr
, 79 (28-36).
73
Brand T
et al.
The cAMP-binding Popdc proteins have a redundant function in the heart.
Biochem. Soc. Trans.,
2014
Apr
, 42 (295-301).
74
Schneider ER
et al.
Temperature sensitivity of two-pore (K2P) potassium channels.
Curr Top Membr,
2014
, 74 (113-33).
75
Ali TY
et al.
The effect of pH and ion channel modulators on human placental arteries.
PLoS ONE,
2014
, 9 (e114405).
76
Roan E
et al.
The 2-pore domain potassium channel TREK-1 regulates stretch-induced detachment of alveolar epithelial cells.
PLoS ONE,
2014
, 9 (e89429).
77
Hwang EM
et al.
A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes.
Nat Commun,
2014
, 5 (3227).
78
Berrier C
et al.
The purified mechanosensitive channel TREK-1 is directly sensitive to membrane tension.
J. Biol. Chem.,
2013
Sep
20
, 288 (27307-14).
79
Heyman NS
et al.
TREK-1 currents in smooth muscle cells from pregnant human myometrium.
Am. J. Physiol., Cell Physiol.,
2013
Sep
15
, 305 (C632-42).
80
Bittner S
et al.
Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS.
Nat. Med.,
2013
Sep
, 19 (1161-5).
81
Innamaa A
et al.
Expression and effects of modulation of the K2P potassium channels TREK-1 (KCNK2) and TREK-2 (KCNK10) in the normal human ovary and epithelial ovarian cancer.
Clin Transl Oncol,
2013
Nov
, 15 (910-8).
82
Pollema-Mays SL
et al.
Expression of background potassium channels in rat DRG is cell-specific and down-regulated in a neuropathic pain model.
Mol. Cell. Neurosci.,
2013
Nov
, 57 (1-9).
83
Ford KJ
et al.
A role for TREK1 in generating the slow afterhyperpolarization in developing starburst amacrine cells.
J. Neurophysiol.,
2013
May
, 109 (2250-9).
84
Schmidt C
et al.
Class I antiarrhythmic drugs inhibit human cardiac two-pore-domain K(+) (K2 ₂p) channels.
Eur. J. Pharmacol.,
2013
Dec
5
, 721 (237-48).
85
Seyler C
et al.
Inhibition of cardiac two-pore-domain K(+) (K2P) channels by the antiarrhythmic drug vernakalant - Comparison with flecainide.
Eur. J. Pharmacol.,
2013
Dec
27
, 724C (51-57).
86
Devilliers M
et al.
Activation of TREK-1 by morphine results in analgesia without adverse side effects.
Nat Commun,
2013
Dec
17
, 4 (2941).
87
Bagriantsev SN
et al.
A high-throughput functional screen identifies small molecule regulators of temperature- and mechano-sensitive K2P channels.
ACS Chem. Biol.,
2013
Aug
16
, 8 (1841-51).
88
Enyeart JJ
et al.
Ca2+ and K+ channels of normal human adrenal zona fasciculata cells: properties and modulation by ACTH and AngII.
J. Gen. Physiol.,
2013
Aug
, 142 (137-55).
89
Ye DQ
et al.
[TREK1 potassium channels and depression].
Yao Xue Xue Bao,
2012
Nov
, 47 (1403-8).
90
Wu X
et al.
Small RNA interference-mediated gene silencing of TREK-1 potassium channel in cultured astrocytes.
J. Huazhong Univ. Sci. Technol. Med. Sci.,
2012
Dec
, 32 (849-55).