ClC7
123 literature references associated to ClC7
1
Zeng B
et al.
A novel mutation and a known mutation in the CLCN7 gene associated with relatively stable infantile malignant osteopetrosis in a Chinese patient.
Gene,
2016
Jan
15
, 576 (176-81).
2
Barrallo-Gimeno A
et al.
Regulatory-auxiliary subunits of CLC chloride channel-transport proteins.
J. Physiol. (Lond.),
2015
Sep
15
, 593 (4111-27).
3
Zifarelli G
A tale of two CLCs: biophysical insights toward understanding ClC-5 and ClC-7 function in endosomes and lysosomes.
J. Physiol. (Lond.),
2015
Sep
15
, 593 (4139-50).
4
Kurita T
et al.
The ClC-7 Chloride Channel Is Downregulated by Hypoosmotic Stress in Human Chondrocytes.
Mol. Pharmacol.,
2015
Jul
, 88 (113-20).
5
Capurro V
et al.
Functional analysis of acid-activated Cl⁻ channels: properties and mechanisms of regulation.
Biochim. Biophys. Acta,
2015
Jan
, 1848 (105-14).
6
Wen X
et al.
Dental and Cranial Pathologies in Mice Lacking the Cl(-) /H(+) -Exchanger ClC-7.
Anat Rec (Hoboken),
2015
Aug
, 298 (1502-8).
7
Turner A
et al.
Development and validation of a high throughput, closed tube method for the determination of haemoglobin alpha gene (HBA1 and HBA2) numbers by gene ratio assay copy enumeration-PCR (GRACE-PCR).
BMC Med. Genet.,
2015
, 16 (115).
8
Li X
et al.
[Genetic analysis of a novel mutation resulting in autosomal dominant osteopetrosis II].
Zhonghua Yi Xue Yi Chuan Xue Za Zhi,
2014
Oct
, 31 (612-4).
9
Coudert AE
et al.
Differentially expressed genes in autosomal dominant osteopetrosis type II osteoclasts reveal known and novel pathways for osteoclast biology.
Lab. Invest.,
2014
Mar
, 94 (275-85).
10
Zheng H
et al.
Identification of two novel CLCN7 gene mutations in three Chinese families with autosomal dominant osteopetrosis type II.
Joint Bone Spine,
2014
Mar
, 81 (188-9).
11
Supanchart C
et al.
ClC-7 expression levels critically regulate bone turnover, but not gastric acid secretion.
Bone,
2014
Jan
, 58 (92-102).
12
Sartelet A
et al.
A missense mutation accelerating the gating of the lysosomal Cl-/H+-exchanger ClC-7/Ostm1 causes osteopetrosis with gingival hamartomas in cattle.
Dis Model Mech,
2014
Jan
, 7 (119-28).
13
Alam I
et al.
Generation of the first autosomal dominant osteopetrosis type II (ADO2) disease models.
Bone,
2014
Feb
, 59 (66-75).
14
Liang W
et al.
Swelling-activated Cl- currents and intracellular CLC-3 are involved in proliferation of human pulmonary artery smooth muscle cells.
J. Hypertens.,
2014
Feb
, 32 (318-30).
15
Barvencik F
et al.
CLCN7 and TCIRG1 mutations differentially affect bone matrix mineralization in osteopetrotic individuals.
J. Bone Miner. Res.,
2014
Apr
, 29 (982-91).
16
Yu T
et al.
Identification of TCIRG1 and CLCN7 gene mutations in a patient with autosomal recessive osteopetrosis.
Mol Med Rep,
2014
Apr
, 9 (1191-6).
17
Bonapace G
et al.
Identification of two novel mutations on CLCN7 gene in a patient with malignant ostopetrosis.
Ital J Pediatr,
2014
, 40 (90).
18
Duan X
Ion Channels, Channelopathies, and Tooth Formation.
J. Dent. Res.,
2013
Sep
27
, ().
19
Ludwig CF
et al.
Common Gating of Both CLC Transporter Subunits Underlies Voltage-dependent Activation of the 2Cl-/1H+ Exchanger ClC-7/Ostm1.
J. Biol. Chem.,
2013
Oct
4
, 288 (28611-28619).
20
Duan X
et al.
Odontoblast-like MDPC-23 cells function as odontoclasts with RANKL/M-CSF induction.
Arch. Oral Biol.,
2013
Mar
, 58 (272-8).
21
Ishida Y
et al.
A model of lysosomal pH regulation.
J. Gen. Physiol.,
2013
Jun
, 141 (705-20).
22
Suh KS
et al.
Xanthohumol modulates the expression of osteoclast-specific genes during osteoclastogenesis in RAW264.7 cells.
Food Chem. Toxicol.,
2013
Dec
, 62 (99-106).
23
Bollerslev J
et al.
Autosomal dominant osteopetrosis revisited: lessons from recent studies.
Eur. J. Endocrinol.,
2013
Aug
, 169 (R39-57).
24
Ochoa-de la Paz LD
et al.
Characterization of an outward rectifying chloride current of Xenopus tropicalis oocytes.
Biochim. Biophys. Acta,
2013
Aug
, 1828 (1743-53).
25
Zanardi I
et al.
An optical assay of the transport activity of ClC-7.
Sci Rep,
2013
, 3 (1231).
26
Szewczyk KA
et al.
Distinctive subdomains in the resorbing surface of osteoclasts.
PLoS ONE,
2013
, 8 (e60285).
27
Pangrazio A
et al.
A homozygous contiguous gene deletion in chromosome 16p13.3 leads to autosomal recessive osteopetrosis in a Jordanian patient.
Calcif. Tissue Int.,
2012
Oct
, 91 (250-4).
28
29
Wang C
et al.
The virulence gene and clinical phenotypes of osteopetrosis in the Chinese population: six novel mutations of the CLCN7 gene in twelve osteopetrosis families.
J. Bone Miner. Metab.,
2012
May
, 30 (338-48).
30
Wang L
et al.
ClC-3 is a candidate of the channel proteins mediating acid-activated chloride currents in nasopharyngeal carcinoma cells.
Am. J. Physiol., Cell Physiol.,
2012
Jul
1
, 303 (C14-23).
31
Stauber T
et al.
Cell biology and physiology of CLC chloride channels and transporters.
Compr Physiol,
2012
Jul
, 2 (1701-44).
32
Xue Y
et al.
Report of two Chinese patients suffering from CLCN7-related osteopetrosis and root dysplasia.
J Craniomaxillofac Surg,
2012
Jul
, 40 (416-20).
33
Al-Aama JY
et al.
A newly described mutation of the CLCN7 gene causes neuropathic autosomal recessive osteopetrosis in an Arab family.
Clin. Dysmorphol.,
2012
Jan
, 21 (1-7).
34
Kim HS
et al.
The inhibitory effect and the molecular mechanism of glabridin on RANKL-induced osteoclastogenesis in RAW264.7 cells.
Int. J. Mol. Med.,
2012
Feb
, 29 (169-77).
35
Kantaputra PN
et al.
Long-term survival in infantile malignant autosomal recessive osteopetrosis secondary to homozygous p.Arg526Gln mutation in CLCN7.
Am. J. Med. Genet. A,
2012
Apr
, 158A (909-16).
37
Zhang H
et al.
Characterisation of Cl(-) transporter and channels in experimentally induced myopic chick eyes.
Clin Exp Optom,
2011
Nov
, 94 (528-35).
38
Majumdar A
et al.
Degradation of Alzheimer's amyloid fibrils by microglia requires delivery of ClC-7 to lysosomes.
Mol. Biol. Cell,
2011
May
15
, 22 (1664-76).
39
Rajan I
et al.
An alternative splicing variant in Clcn7-/- mice prevents osteopetrosis but not neural and retinal degeneration.
Vet. Pathol.,
2011
May
, 48 (663-75).
40
Leisle L
et al.
ClC-7 is a slowly voltage-gated 2Cl(-)/1H(+)-exchanger and requires Ostm1 for transport activity.
,
2011
Apr
28
, ().
41
Duncan EL
et al.
Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk.
PLoS Genet.,
2011
Apr
, 7 (e1001372).
42
Stauber T
et al.
Sorting motifs of the endosomal/lysosomal CLC chloride transporters.
J. Biol. Chem.,
2010
Nov
5
, 285 (34537-48).
43
Whyte MP
et al.
Elevated serum lactate dehydrogenase isoenzymes and aspartate transaminase distinguish Albers-Schönberg disease (Chloride Channel 7 Deficiency Osteopetrosis) among the sclerosing bone disorders.
J. Bone Miner. Res.,
2010
Nov
, 25 (2515-26).
44
Furthner D
et al.
Osteopetrosis due to homozygous chloride channel ClCN7 mutation mimicking metabolic disease with haematological and neurological impairment.
Klin Padiatr,
2010
May
, 222 (180-3).
45
Steinberg BE
et al.
A cation counterflux supports lysosomal acidification.
J. Cell Biol.,
2010
Jun
28
, 189 (1171-86).
46
Weinert S
et al.
Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl- accumulation.
Science,
2010
Jun
11
, 328 (1401-3).
47
Cao L
et al.
Chloride channels and transporters in human corneal epithelium.
Exp. Eye Res.,
2010
Jun
, 90 (771-9).
48
Neagoe I
et al.
The late endosomal ClC-6 mediates proton/chloride countertransport in heterologous plasma membrane expression.
J. Biol. Chem.,
2010
Jul
9
, 285 (21689-97).
49
Wartosch L
et al.
A role for chloride transport in lysosomal protein degradation.
Autophagy,
2010
Jan
, 6 (158-9).
50
Pangrazio A
et al.
Molecular and clinical heterogeneity in CLCN7-dependent osteopetrosis: report of 20 novel mutations.
Hum. Mutat.,
2010
Jan
, 31 (E1071-80).
51
Pressey SN
et al.
Distinct neuropathologic phenotypes after disrupting the chloride transport proteins ClC-6 or ClC-7/Ostm1.
J. Neuropathol. Exp. Neurol.,
2010
Dec
, 69 (1228-46).
52
Tian M
et al.
Chloride channels regulate chondrogenesis in chicken mandibular mesenchymal cells.
Arch. Oral Biol.,
2010
Dec
, 55 (938-45).
53
Phadke SR
et al.
Novel mutations in Indian patients with autosomal recessive infantile malignant osteopetrosis.
Indian J. Med. Res.,
2010
Apr
, 131 (508-14).
54
Schulz P
et al.
The G215R mutation in the Cl-/H+-antiporter ClC-7 found in ADO II osteopetrosis does not abolish function but causes a severe trafficking defect.
PLoS ONE,
2010
, 5 (e12585).
55
Kajiya H
et al.
Characteristics of ClC7 Cl- channels and their inhibition in mutant (G215R) associated with autosomal dominant osteopetrosis type II in native osteoclasts and hClcn7 gene-expressing cells.
Pflugers Arch.,
2009
Oct
, 458 (1049-59).
56
Plans V
et al.
Physiological roles of CLC Cl(-)/H (+) exchangers in renal proximal tubules.
Pflugers Arch.,
2009
May
, 458 (23-37).
57
Perdu B
et al.
Refined genomic localization of the genetic lesion in the osteopetrosis (op) rat and exclusion of three positional and functional candidate genes, Clcn7, Atp6v0c, and Slc9a3r2.
Calcif. Tissue Int.,
2009
May
, 84 (355-60).
58
Zhao Q
et al.
CLC-7: a potential therapeutic target for the treatment of osteoporosis and neurodegeneration.
Biochem. Biophys. Res. Commun.,
2009
Jul
3
, 384 (277-9).
59
Henriksen K
et al.
Characterization of acid flux in osteoclasts from patients harboring a G215R mutation in ClC-7.
Biochem. Biophys. Res. Commun.,
2009
Jan
23
, 378 (804-9).
60
Wartosch L
et al.
Lysosomal degradation of endocytosed proteins depends on the chloride transport protein ClC-7.
FASEB J.,
2009
Dec
, 23 (4056-68).
61
Besbas N
et al.
A novel CLCN7 mutation resulting in a most severe form of autosomal recessive osteopetrosis.
Eur. J. Pediatr.,
2009
Dec
, 168 (1449-54).
62
Mazzolari E
et al.
A single-center experience in 20 patients with infantile malignant osteopetrosis.
Am. J. Hematol.,
2009
Aug
, 84 (473-9).
63
Zhang ZL
et al.
Identification of the CLCN7 gene mutations in two Chinese families with autosomal dominant osteopetrosis (type II).
J. Bone Miner. Metab.,
2009
, 27 (444-51).
64
Braun AP
Identification of ClC-7 as a major pathway for Cl- movement in lysosomes.
Channels (Austin),
2008 Sep-Oct
, 2 (309).
65
Hou J
et al.
ClC chloride channels in tooth germ and odontoblast-like MDPC-23 cells.
Arch. Oral Biol.,
2008
Sep
, 53 (874-8).
66
Henriksen K
et al.
Ion transporters involved in acidification of the resorption lacuna in osteoclasts.
Calcif. Tissue Int.,
2008
Sep
, 83 (230-42).
67
Nijenhuis T
et al.
Bone resorption inhibitor alendronate normalizes the reduced bone thickness of TRPV5(-/-) mice.
J. Bone Miner. Res.,
2008
Nov
, 23 (1815-24).
68
Okamoto F
et al.
Intracellular ClC-3 chloride channels promote bone resorption in vitro through organelle acidification in mouse osteoclasts.
Am. J. Physiol., Cell Physiol.,
2008
Mar
, 294 (C693-701).
69
Graves AR
et al.
The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes.
Nature,
2008
Jun
5
, 453 (788-92).
70
Neutzsky-Wulff AV
et al.
Characterization of the bone phenotype in ClC-7-deficient mice.
Calcif. Tissue Int.,
2008
Dec
, 83 (425-37).
71
Chu K
et al.
CLCN7 polymorphisms and bone mineral density in healthy premenopausal white women and in white men.
Bone,
2008
Dec
, 43 (995-8).
72
Ripoll VM
et al.
Microphthalmia transcription factor regulates the expression of the novel osteoclast factor GPNMB.
Gene,
2008
Apr
30
, 413 (32-41).
73
Nielsen RH
et al.
Dissolution of the inorganic phase of bone leading to release of calcium regulates osteoclast survival.
Biochem. Biophys. Res. Commun.,
2007
Sep
7
, 360 (834-9).
74
Sørensen MG
et al.
Diphyllin, a novel and naturally potent V-ATPase inhibitor, abrogates acidification of the osteoclastic resorption lacunae and bone resorption.
J. Bone Miner. Res.,
2007
Oct
, 22 (1640-8).
75
Waguespack SG
et al.
Autosomal dominant osteopetrosis: clinical severity and natural history of 94 subjects with a chloride channel 7 gene mutation.
J. Clin. Endocrinol. Metab.,
2007
Mar
, 92 (771-8).
76
Meadows NA
et al.
The expression of Clcn7 and Ostm1 in osteoclasts is coregulated by microphthalmia transcription factor.
J. Biol. Chem.,
2007
Jan
19
, 282 (1891-904).
77
Jentsch TJ
Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters.
J. Physiol. (Lond.),
2007
Feb
1
, 578 (633-40).
78
Ignoul S
et al.
Human ClC-6 is a late endosomal glycoprotein that associates with detergent-resistant lipid domains.
PLoS ONE,
2007
, 2 (e474).
79
80
Lange PF
et al.
ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function.
Nature,
2006
Mar
9
, 440 (220-3).
81
Kornak U
et al.
Polymorphisms in the CLCN7 gene modulate bone density in postmenopausal women and in patients with autosomal dominant osteopetrosis type II.
J. Clin. Endocrinol. Metab.,
2006
Mar
, 91 (995-1000).
82
Suzuki T
et al.
Intracellular localization of ClC chloride channels and their ability to form hetero-oligomers.
J. Cell. Physiol.,
2006
Mar
, 206 (792-8).
83
Chu K
et al.
Disease status in autosomal dominant osteopetrosis type 2 is determined by osteoclastic properties.
J. Bone Miner. Res.,
2006
Jul
, 21 (1089-97).
84
Henriksen K
et al.
Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification.
J. Bone Miner. Res.,
2006
Jan
, 21 (58-66).
85
Del Fattore A
et al.
Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment.
J. Med. Genet.,
2006
Apr
, 43 (315-25).
86
Schaller S
et al.
The role of chloride channels in osteoclasts: ClC-7 as a target for osteoporosis treatment.
Drug News Perspect.,
2005
Oct
, 18 (489-95).
87
Pettersson U
et al.
Polymorphisms of the CLCN7 gene are associated with BMD in women.
J. Bone Miner. Res.,
2005
Nov
, 20 (1960-7).
88
Kasper D
et al.
Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration.
EMBO J.,
2005
Mar
9
, 24 (1079-91).
89
Campos-Xavier AB
et al.
Intrafamilial phenotypic variability of osteopetrosis due to chloride channel 7 (CLCN7) mutations.
Am. J. Med. Genet. A,
2005
Mar
1
, 133A (216-8).
90
Comes N
et al.
Differential expression of the human chloride channel genes in the trabecular meshwork under stress conditions.
Exp. Eye Res.,
2005
Jun
, 80 (801-13).
91
Ernest NJ
et al.
Relative contribution of chloride channels and transporters to regulatory volume decrease in human glioma cells.
Am. J. Physiol., Cell Physiol.,
2005
Jun
, 288 (C1451-60).
92
Scheel O
et al.
Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins.
Nature,
2005
Jul
21
, 436 (424-7).
93
Mummery JL
et al.
Expression of the chloride channel CLC-K in human airway epithelial cells.
Can. J. Physiol. Pharmacol.,
2005
Dec
, 83 (1123-8).
94
Henriksen K
et al.
Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type II.
Am. J. Pathol.,
2004
May
, 164 (1537-45).
95
Parkerson KA
et al.
Biophysical and pharmacological characterization of hypotonically activated chloride currents in cortical astrocytes.
Glia,
2004
May
, 46 (419-36).
96
Alatalo SL
et al.
Osteoclast-derived serum tartrate-resistant acid phosphatase 5b in Albers-Schonberg disease (type II autosomal dominant osteopetrosis).
Clin. Chem.,
2004
May
, 50 (883-90).
97
Schaller S
et al.
The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation.
J. Bone Miner. Res.,
2004
Jul
, 19 (1144-53).
98
Blair HC
et al.
Recent advances in osteoclast biology and pathological bone resorption.
Histol. Histopathol.,
2004
Jan
, 19 (189-99).
99
Letizia C
et al.
Type II benign osteopetrosis (Albers-Schönberg disease) caused by a novel mutation in CLCN7 presenting with unusual clinical manifestations.
Calcif. Tissue Int.,
2004
Jan
, 74 (42-6).
100
Davies N
et al.
Chloride channel gene expression in the rabbit cornea.
Mol. Vis.,
2004
Dec
30
, 10 (1028-37).
101
Blair HC
et al.
In vitro differentiation of CD14 cells from osteopetrotic subjects: contrasting phenotypes with TCIRG1, CLCN7, and attachment defects.
J. Bone Miner. Res.,
2004
Aug
, 19 (1329-38).
102
Frattini A
et al.
Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis.
J. Bone Miner. Res.,
2003
Oct
, 18 (1740-7).
103
Furukawa T
[Various functions of ClC-type Cl- channels]
Nippon Yakurigaku Zasshi,
2003
Nov
, 122 (375-83).
104
Auzanneau C
et al.
A Novel voltage-dependent chloride current activated by extracellular acidic pH in cultured rat Sertoli cells.
J. Biol. Chem.,
2003
May
23
, 278 (19230-6).
105
Olsen ML
et al.
Expression of voltage-gated chloride channels in human glioma cells.
J. Neurosci.,
2003
Jul
2
, 23 (5572-82).
106
Campos-Xavier AB
et al.
Chloride channel 7 (CLCN7) gene mutations in intermediate autosomal recessive osteopetrosis.
Hum. Genet.,
2003
Feb
, 112 (186-9).
107
Waguespack SG
et al.
Chloride channel 7 (ClCN7) gene mutations and autosomal dominant osteopetrosis, type II.
J. Bone Miner. Res.,
2003
Aug
, 18 (1513-8).
108
Kulka M
et al.
Mast cells express chloride channels of the ClC family.
Inflamm. Res.,
2002
Sep
, 51 (451-6).
109
Diewald L
et al.
Activation by acidic pH of CLC-7 expressed in oocytes from Xenopus laevis.
Biochem. Biophys. Res. Commun.,
2002
Feb
22
, 291 (421-4).
110
Alper SL
Genetic diseases of acid-base transporters.
Annu. Rev. Physiol.,
2002
, 64 (899-923).
111
Li X
et al.
Chloride channels and hepatocellular function: prospects for molecular identification.
Annu. Rev. Physiol.,
2002
, 64 (609-33).
112
Vandewalle A
[Function of the CLC chloride channels and their implication in human pathology]
,
2002
, 23 (113-8).
113
Kida Y
et al.
Localization of mouse CLC-6 and CLC-7 mRNA and their functional complementation of yeast CLC gene mutant.
Histochem. Cell Biol.,
2001
Mar
, 115 (189-94).
114
Prince LS
et al.
KGF alters gene expression in human airway epithelia: potential regulation of the inflammatory response.
Physiol. Genomics,
2001
Jul
17
, 6 (81-9).
115
Kornak U
et al.
Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man.
Cell,
2001
Jan
26
, 104 (205-15).
116
Cleiren E
et al.
Albers-Schönberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene.
Hum. Mol. Genet.,
2001
Dec
1
, 10 (2861-7).
117
Scherer CR
et al.
Gene expression profiles of CLC chloride channels in animal models with different cardiovascular diseases.
Cell. Physiol. Biochem.,
2001
, 11 (321-30).
118
Thakker RV
Molecular pathology of renal chloride channels in Dent's disease and Bartter's syndrome.
Exp. Nephrol.,
2000 Nov-Dec
, 8 (351-60).
119
Kornak U
et al.
Complete genomic structure of the CLCN6 and CLCN7 putative chloride channel genes(1).
Biochim. Biophys. Acta,
1999
Oct
6
, 1447 (100-6).
120
Thakker RV
The role of renal chloride channel mutations in kidney stone disease and nephrocalcinosis.
Curr. Opin. Nephrol. Hypertens.,
1998
Jul
, 7 (385-8).
121
Eggermont J
The exon-intron architecture of human chloride channel genes is not conserved.
Biochim. Biophys. Acta,
1998
Apr
29
, 1397 (156-60).
122
Hechenberger M
et al.
A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption.
J. Biol. Chem.,
1996
Dec
27
, 271 (33632-8).
123
Brandt S
et al.
ClC-6 and ClC-7 are two novel broadly expressed members of the CLC chloride channel family.
FEBS Lett.,
1995
Dec
11
, 377 (15-20).