TASK3
43 literature references associated to TASK3
1
Lan X
et al.
Grafting voltage and pharmacological sensitivity in potassium channels.
Cell Res.,
2016
May
13
, ().
2
Skarsfeldt MA
et al.
pH-dependent inhibition of K2P3.1 prolongs atrial refractoriness in whole hearts.
Pflugers Arch.,
2016
Jan
5
, ().
3
Laskowski M
et al.
What do we not know about mitochondrial potassium channels?
Biochim. Biophys. Acta,
2016
Aug
, 1857 (1247-57).
4
Sun H
et al.
A monoclonal antibody against KCNK9 K(+) channel extracellular domain inhibits tumour growth and metastasis.
Nat Commun,
2016
, 7 (10339).
5
Chokshi RH
et al.
Breathing Stimulant Compounds Inhibit TASK-3 Potassium Channel Function Likely by Binding at a Common Site in the Channel Pore.
Mol. Pharmacol.,
2015
Nov
, 88 (926-34).
6
Li XJ
et al.
[Neuroprotective effect of progesterone on focal cerebral ischemia/reperfusion injury in rats and its mechanism].
Zhongguo Ying Yong Sheng Li Xue Za Zhi,
2015
May
, 31 (231-4).
7
Wei LY
et al.
[Construction of acid-sensitive potassium channel-3 eukaryotic expression plasmid and its express in SH-SY5Y cells].
Zhongguo Ying Yong Sheng Li Xue Za Zhi,
2015
May
, 31 (211-5).
8
Kilisch M
et al.
The role of protein-protein interactions in the intracellular traffic of the potassium channels TASK-1 and TASK-3.
Pflugers Arch.,
2015
May
, 467 (1105-20).
9
MacKenzie G
et al.
Two-pore domain potassium channels enable action potential generation in the absence of voltage-gated potassium channels.
Pflugers Arch.,
2015
May
, 467 (989-99).
10
Mathie A
et al.
Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain.
Pflugers Arch.,
2015
May
, 467 (931-43).
11
Bayliss DA
et al.
The role of pH-sensitive TASK channels in central respiratory chemoreception.
Pflugers Arch.,
2015
May
, 467 (917-29).
12
Bandulik S
et al.
Two-pore domain potassium channels in the adrenal cortex.
Pflugers Arch.,
2015
May
, 467 (1027-42).
13
Langford DJ
et al.
Variations in potassium channel genes are associated with distinct trajectories of persistent breast pain after breast cancer surgery.
Pain,
2015
Mar
, 156 (371-80).
14
Borsotto M
et al.
Targeting two-pore domain K(+) channels TREK-1 and TASK-3 for the treatment of depression: a new therapeutic concept.
Br. J. Pharmacol.,
2015
Feb
, 172 (771-84).
15
Ru F
et al.
Acid sensitivity of the spinal dorsal root ganglia C-fiber nociceptors innervating the guinea pig esophagus.
Neurogastroenterol. Motil.,
2015
Apr
5
, ().
16
Kubota K
et al.
Hydroxy-α sanshool induces colonic motor activity in rat proximal colon: a possible involvement of KCNK9.
Am. J. Physiol. Gastrointest. Liver Physiol.,
2015
Apr
1
, 308 (G579-90).
17
Braun G
et al.
Differential sensitivity of TREK-1, TREK-2 and TRAAK background potassium channels to the polycationic dye ruthenium red.
Br. J. Pharmacol.,
2015
Apr
, 172 (1728-38).
18
Rinné S
et al.
TASK-1 and TASK-3 may form heterodimers in human atrial cardiomyocytes.
J. Mol. Cell. Cardiol.,
2015
Apr
, 81 (71-80).
19
Morenilla-Palao C
et al.
Ion channel profile of TRPM8 cold receptors reveals a role of TASK-3 potassium channels in thermosensation.
Cell Rep,
2014
Sep
11
, 8 (1571-82).
20
Sánchez Delgado M
et al.
Screening individuals with intellectual disability, autism and Tourette's syndrome for KCNK9 mutations and aberrant DNA methylation within the 8q24 imprinted cluster.
Am. J. Med. Genet. B Neuropsychiatr. Genet.,
2014
Sep
, 165B (472-8).
21
Perry JR
et al.
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Nature,
2014
Oct
2
, 514 (92-7).
22
Veale EL
et al.
Recovery of current through mutated TASK3 potassium channels underlying Birk Barel syndrome.
Mol. Pharmacol.,
2014
Mar
, 85 (397-407).
23
Li C
et al.
Stable cell line of human SH-SY5Y uniformly expressing TWIK-related acid-sensitive potassium channel and eGFP fusion.
Appl. Biochem. Biotechnol.,
2014
Mar
, 172 (3253-62).
24
Bruner JK
et al.
Identification of novel small molecule modulators of K2P18.1 two-pore potassium channel.
Eur. J. Pharmacol.,
2014
Jun
24
, ().
25
Hoggart CJ
et al.
Novel approach identifies SNPs in SLC2A10 and KCNK9 with evidence for parent-of-origin effect on body mass index.
PLoS Genet.,
2014
Jul
, 10 (e1004508).
26
Langford DJ
et al.
Variations in Potassium Channel Genes Are Associated With Breast Pain in Women Prior to Breast Cancer Surgery.
J. Neurogenet.,
2014
Jan
7
, ().
27
El Hachmane MF
et al.
Enhancement of TWIK-related Acid-sensitive Potassium Channel 3 (TASK3) Two-pore Domain Potassium Channel Activity by Tumor Necrosis Factor α.
J. Biol. Chem.,
2014
Jan
17
, 289 (1388-401).
28
Gomez-Sanchez CE
et al.
Minireview: potassium channels and aldosterone dysregulation: is primary aldosteronism a potassium channelopathy?
Endocrinology,
2014
Jan
, 155 (47-55).
29
Marinc C
et al.
Immunocytochemical localization of TASK-3 protein (K2P9.1) in the rat brain.
Cell. Mol. Neurobiol.,
2014
Jan
, 34 (61-70).
30
Nagy D
et al.
Silencing the KCNK9 potassium channel (TASK-3) gene disturbs mitochondrial function, causes mitochondrial depolarization, and induces apoptosis of human melanoma cells.
Arch. Dermatol. Res.,
2014
Dec
, 306 (885-902).
31
Flaherty DP
et al.
Potent and selective inhibitors of the TASK-1 potassium channel through chemical optimization of a bis-amide scaffold.
Bioorg. Med. Chem. Lett.,
2014
Aug
15
, 24 (3968-73).
32
Noriega-Navarro R
et al.
Novel TASK channels inhibitors derived from dihydropyrrolo[2,1-a]isoquinoline.
Neuropharmacology,
2014
Apr
, 79 (28-36).
33
Wilke BU
et al.
Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors.
Nat Commun,
2014
, 5 (5540).
34
Mant A
et al.
Acid sensitive background potassium channels K2P3.1 and K2P9.1 undergo rapid dynamin-dependent endocytosis.
Channels (Austin),
2013 Jul-Aug
, 7 (288-302).
35
Toczyłowska-Mamińska R
et al.
Potassium Channel in the Mitochondria of Human Keratinocytes.
J. Invest. Dermatol.,
2013
Oct
14
, ().
36
Pollema-Mays SL
et al.
Expression of background potassium channels in rat DRG is cell-specific and down-regulated in a neuropathic pain model.
Mol. Cell. Neurosci.,
2013
Nov
, 57 (1-9).
37
Stowasser M
Primary aldosteronism and potassium channel mutations.
Curr Opin Endocrinol Diabetes Obes,
2013
Jun
, 20 (170-9).
38
Matsuoka H
et al.
Nerve growth factor-induced endocytosis of TWIK-related acid-sensitive K⁺ 1 channels in adrenal medullary cells and PC12 cells.
Pflugers Arch.,
2013
Jul
, 465 (1051-64).
39
Turner PJ
et al.
Oxygen and mitochondrial inhibitors modulate both monomeric and heteromeric TASK-1 and TASK-3 channels in mouse carotid body type-1 cells.
J. Physiol. (Lond.),
2013
Dec
1
, 591 (5977-98).
40
Bandulik S
et al.
Severe hyperaldosteronism in neonatal Task3 potassium channel knockout mice is associated with activation of the intraadrenal renin-angiotensin system.
Endocrinology,
2013
Aug
, 154 (2712-22).
41
Anders C
et al.
A semisynthetic fusicoccane stabilizes a protein-protein interaction and enhances the expression of K+ channels at the cell surface.
Chem. Biol.,
2013
Apr
18
, 20 (583-93).
42
Nadin BM
et al.
A new TASK for Dipeptidyl Peptidase-like Protein 6.
PLoS ONE,
2013
, 8 (e60831).
43
Lübbert M
et al.
Transient receptor potential channels encode volatile chemicals sensed by rat trigeminal ganglion neurons.
PLoS ONE,
2013
, 8 (e77998).