ClC5
262 literature references associated to ClC5
1
Devuyst O
et al.
Chloride transporters and receptor-mediated endocytosis in the renal proximal tubule.
J. Physiol. (Lond.),
2015
Sep
15
, 593 (4151-64).
2
Zifarelli G
A tale of two CLCs: biophysical insights toward understanding ClC-5 and ClC-7 function in endosomes and lysosomes.
J. Physiol. (Lond.),
2015
Sep
15
, 593 (4139-50).
3
4
Pohl M
et al.
Short-term functional adaptation of aquaporin-1 surface expression in the proximal tubule, a component of glomerulotubular balance.
J. Am. Soc. Nephrol.,
2015
Jun
, 26 (1269-78).
5
Greenlee MM
et al.
Prolactin stimulates sodium and chloride ion channels in A6 renal epithelial cells.
Am. J. Physiol. Renal Physiol.,
2015
Jan
13
, (ajprenal.00270.2014).
6
Jian S
et al.
[Clinical and genetic analysis of Dent disease in 4 Chinese children].
Zhongguo Dang Dai Er Ke Za Zhi,
2015
Dec
, 17 (1261-6).
7
Nanami M
et al.
ENaC inhibition stimulates HCl secretion in the mouse cortical collecting duct. I. Stilbene-sensitive Cl- secretion.
Am. J. Physiol. Renal Physiol.,
2015
Aug
1
, 309 (F251-8).
8
Mansour-Hendili L
et al.
Mutation Update of the CLCN5 Gene Responsible for Dent Disease 1.
Hum. Mutat.,
2015
Aug
, 36 (743-52).
9
Lee A
et al.
Chloride channel ClC-5 binds to aspartyl aminopeptidase to regulate renal albumin endocytosis.
Am. J. Physiol. Renal Physiol.,
2015
Apr
1
, 308 (F784-92).
10
Ruiz-Lafuente N
et al.
IL-4 Up-Regulates MiR-21 and the MiRNAs Hosted in the CLCN5 Gene in Chronic Lymphocytic Leukemia.
PLoS ONE,
2015
, 10 (e0124936).
11
Grieschat M
et al.
Multiple discrete transitions underlie voltage-dependent activation in CLC Cl(-)/H(+) antiporters.
Biophys. J.,
2014
Sep
16
, 107 (L13-5).
12
Cramer MT
et al.
Expanding the phenotype of proteinuria in Dent disease. A case series.
Pediatr. Nephrol.,
2014
Oct
, 29 (2051-4).
13
Pusch M
et al.
ClC-5: Physiological role and biophysical mechanisms.
Cell Calcium,
2014
Nov
13
, ().
14
Park E
et al.
Muscle involvement in Dent disease 2.
Pediatr. Nephrol.,
2014
Nov
, 29 (2127-32).
15
Ashida A
et al.
Molecular effect of a novel missense mutation, L266V, on function of ClC-5 protein in a Japanese patient with Dent's disease.
Clin. Nephrol.,
2014
Jul
, 82 (58-61).
16
Sekine T
et al.
Japanese Dent disease has a wider clinical spectrum than Dent disease in Europe/USA: genetic and clinical studies of 86 unrelated patients with low-molecular-weight proteinuria.
Nephrol. Dial. Transplant.,
2014
Feb
, 29 (376-84).
17
Zhang H
et al.
Identification of a novel mutation in the CLCN5 gene in a Chinese family with Dent-1 disease.
Nephrology (Carlton),
2014
Feb
, 19 (80-3).
18
Ji LN
et al.
A novel CLCN5 mutation in a Chinese boy with Dent's disease.
World J Pediatr,
2014
Aug
, 10 (275-7).
19
Tosetto E
et al.
Complexity of the 5'UTR region of the CLCN5 gene: eleven 5'UTR ends are differentially expressed in the human kidney.
BMC Med Genomics,
2014
, 7 (41).
20
Platt C
et al.
Dent's disease complicated by an acute Budd-Chiari syndrome.
BMJ Case Rep,
2014
, 2014 ().
21
Duan X
Ion Channels, Channelopathies, and Tooth Formation.
J. Dent. Res.,
2013
Sep
27
, ().
22
Valina MR
et al.
A novel CLCN5 mutation in a boy with asymptomatic proteinuria and focal global glomerulosclerosis.
Clin. Nephrol.,
2013
Nov
, 80 (377-84).
23
Guzman RE
et al.
ClC-3 is an intracellular chloride/proton exchanger with large voltage-dependent nonlinear capacitance.
ACS Chem Neurosci,
2013
Jun
19
, 4 (994-1003).
24
D'Antonio C
et al.
Conformational defects underlie proteasomal degradation of Dent's disease-causing mutants of ClC-5.
Biochem. J.,
2013
Jun
15
, 452 (391-400).
25
Addis M
et al.
An atypical Dent's disease phenotype caused by co-inheritance of mutations at CLCN5 and OCRL genes.
Eur. J. Hum. Genet.,
2013
Jun
, 21 (687-90).
26
De Stefano S
et al.
A single point mutation reveals gating of the human ClC-5 Cl-/H+ antiporter.
J. Physiol. (Lond.),
2013
Dec
1
, 591 (5879-93).
27
Ochoa-de la Paz LD
et al.
Characterization of an outward rectifying chloride current of Xenopus tropicalis oocytes.
Biochim. Biophys. Acta,
2013
Aug
, 1828 (1743-53).
28
Gorvin CM
et al.
Receptor-mediated endocytosis and endosomal acidification is impaired in proximal tubule epithelial cells of Dent disease patients.
Proc. Natl. Acad. Sci. U.S.A.,
2013
Apr
23
, 110 (7014-9).
29
Jonchere VV
et al.
Identification of uterine ion transporters for mineralisation precursors of the avian eggshell.
BMC Physiol.,
2012
Sep
4
, 12 (10).
30
Zifarelli G
et al.
On the mechanism of gating charge movement of ClC-5, a human Cl(-)/H(+) antiporter.
Biophys. J.,
2012
May
2
, 102 (2060-9).
31
Grieschat M
et al.
Glutamate 268 regulates transport probability of the anion/proton exchanger ClC-5.
J. Biol. Chem.,
2012
Mar
9
, 287 (8101-9).
32
Bennetts B
et al.
Intracellular β-nicotinamide adenine dinucleotide inhibits the skeletal muscle ClC-1 chloride channel.
J. Biol. Chem.,
2012
Jul
27
, 287 (25808-20).
33
Stauber T
et al.
Cell biology and physiology of CLC chloride channels and transporters.
Compr Physiol,
2012
Jul
, 2 (1701-44).
34
Beck-Nielsen SS
et al.
Mutational analysis of PHEX, FGF23, DMP1, SLC34A3 and CLCN5 in patients with hypophosphatemic rickets.
J. Hum. Genet.,
2012
Jul
, 57 (453-8).
35
Lourdel S
et al.
ClC-5 mutations associated with Dent's disease: a major role of the dimer interface.
Pflugers Arch.,
2012
Feb
, 463 (247-56).
36
Okamoto T
et al.
A patient with Dent disease and features of Bartter syndrome caused by a novel mutation of CLCN5.
Eur. J. Pediatr.,
2012
Feb
, 171 (401-4).
37
Coulibaly G
et al.
[Dent's syndrome. Nephrology follow-up of four patients of the same family].
Nephrol. Ther.,
2012
Apr
, 8 (92-5).
38
Lippiat JD
et al.
The CLC-5 2Cl(-)/H(+) exchange transporter in endosomal function and Dent's disease.
Front Physiol,
2012
, 3 (449).
39
Ceol M
et al.
Involvement of the tubular ClC-type exchanger ClC-5 in glomeruli of human proteinuric nephropathies.
PLoS ONE,
2012
, 7 (e45605).
40
Zhang H
et al.
Characterisation of Cl(-) transporter and channels in experimentally induced myopic chick eyes.
Clin Exp Optom,
2011
Nov
, 94 (528-35).
41
Claverie-Martín F
et al.
Dent's disease: clinical features and molecular basis.
Pediatr. Nephrol.,
2011
May
, 26 (693-704).
42
Lin Z
et al.
Chloride channel (Clc)-5 is necessary for exocytic trafficking of Na+/H+ exchanger 3 (NHE3).
J. Biol. Chem.,
2011
Jul
1
, 286 (22833-45).
43
De Stefano S
et al.
Extracellular determinants of anion discrimination of the Cl-/H+ antiporter protein CLC-5.
J. Biol. Chem.,
2011
Dec
23
, 286 (44134-44).
44
Fong P
Thyroid iodide efflux: a team effort?
J. Physiol. (Lond.),
2011
Dec
15
, 589 (5929-39).
45
Raggi C
et al.
Decreased renal accumulation of aminoglycoside reflects defective receptor-mediated endocytosis in cystic fibrosis and Dent's disease.
Pflugers Arch.,
2011
Dec
, 462 (851-60).
46
Grand T
et al.
Heterogeneity in the processing of CLCN5 mutants related to Dent disease.
Hum. Mutat.,
2011
Apr
, 32 (476-83).
47
Tseng PY
et al.
Binding of ATP to the CBS domains in the C-terminal region of CLC-1.
J. Gen. Physiol.,
2011
Apr
, 137 (357-68).
48
Jouret F
et al.
Segmental and subcellular distribution of CFTR in the kidney.
Methods Mol. Biol.,
2011
, 741 (285-99).
49
Simske JS
et al.
Claudin family proteins in Caenorhabditis elegans.
Methods Mol. Biol.,
2011
, 762 (147-69).
50
Wang H
et al.
Osteogenic role of endosomal chloride channels in MC3T3-E1 cells.
Mol. Cell. Biochem.,
2010
Sep
, 342 (191-9).
51
Stauber T
et al.
Sorting motifs of the endosomal/lysosomal CLC chloride transporters.
J. Biol. Chem.,
2010
Nov
5
, 285 (34537-48).
52
Bogdanović R
et al.
A novel CLCN5 mutation in a boy with Bartter-like syndrome and partial growth hormone deficiency.
Pediatr. Nephrol.,
2010
Nov
, 25 (2363-8).
53
Smith AJ
et al.
Voltage-dependent charge movement associated with activation of the CLC-5 2Cl-/1H+ exchanger.
,
2010
May
25
, ().
54
Zhu BZ
et al.
[Clinical and genetic analysis of Dent' s disease in 6 Chinese children with low molecular weight proteinuria].
Zhonghua Er Ke Za Zhi,
2010
May
, 48 (329-33).
55
Rickheit G
et al.
Role of ClC-5 in renal endocytosis is unique among ClC exchangers and does not require PY-motif-dependent ubiquitylation.
J. Biol. Chem.,
2010
Jun
4
, 285 (17595-603).
56
Smith AJ
et al.
Direct endosomal acidification by the outwardly rectifying CLC-5 Cl(-)/H(+) exchanger.
J. Physiol. (Lond.),
2010
Jun
15
, 588 (2033-45).
57
Novarino G
et al.
Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis.
Science,
2010
Jun
11
, 328 (1398-401).
58
Cao L
et al.
Chloride channels and transporters in human corneal epithelium.
Exp. Eye Res.,
2010
Jun
, 90 (771-9).
59
Picollo A
et al.
Proton block of the CLC-5 Cl-/H+ exchanger.
J. Gen. Physiol.,
2010
Jun
, 135 (653-9).
60
Wellhauser L
et al.
ClC transporters: discoveries and challenges in defining the mechanisms underlying function and regulation of ClC-5.
Pflugers Arch.,
2010
Jul
, 460 (543-57).
61
Reed AA
et al.
CLC-5 and KIF3B interact to facilitate CLC-5 plasma membrane expression, endocytosis, and microtubular transport: relevance to pathophysiology of Dent's disease.
Am. J. Physiol. Renal Physiol.,
2010
Feb
, 298 (F365-80).
62
Jouret F
et al.
Single photon emission-computed tomography (SPECT) for functional investigation of the proximal tubule in conscious mice.
Am. J. Physiol. Renal Physiol.,
2010
Feb
, 298 (F454-60).
63
Tanaka K
et al.
The transcription factor HNF1α regulates expression of chloride-proton exchanger ClC-5 in the renal proximal tubule.
Am. J. Physiol. Renal Physiol.,
2010
Dec
, 299 (F1339-47).
64
Tian M
et al.
Chloride channels regulate chondrogenesis in chicken mandibular mesenchymal cells.
Arch. Oral Biol.,
2010
Dec
, 55 (938-45).
65
Senou M
et al.
A coherent organization of differentiation proteins is required to maintain an appropriate thyroid function in the Pendred thyroid.
J. Clin. Endocrinol. Metab.,
2010
Aug
, 95 (4021-30).
66
Alex P
et al.
Clcn5 knockout mice exhibit novel immunomodulatory effects and are more susceptible to dextran sulfate sodium-induced colitis.
J. Immunol.,
2010
Apr
1
, 184 (3988-96).
68
Carraro-Lacroix LR
et al.
Role of CFTR and ClC-5 in modulating vacuolar H+-ATPase activity in kidney proximal tubule.
Cell. Physiol. Biochem.,
2010
, 26 (563-76).
69
Ringman Uggla A
et al.
Expression of chloride channels in trachea-occluded hyperplastic lungs and nitrofen-induced hypoplastic lungs in rats.
Pediatr. Surg. Int.,
2009
Sep
, 25 (799-806).
70
Sethi SK
et al.
Vitamin A responsive night blindness in Dent's disease.
Pediatr. Nephrol.,
2009
Sep
, 24 (1765-70).
71
Zifarelli G
et al.
Intracellular regulation of human ClC-5 by adenine nucleotides.
EMBO Rep.,
2009
Oct
, 10 (1111-6).
72
Tosetto E
et al.
Novel mutations of the CLCN5 gene including a complex allele and A 5' UTR mutation in Dent disease 1.
Clin. Genet.,
2009
Oct
, 76 (413-6).
73
Tosetto E
et al.
Locus heterogeneity of Dent's disease: OCRL1 and TMEM27 genes in patients with no CLCN5 mutations.
Pediatr. Nephrol.,
2009
Oct
, 24 (1967-73).
74
Grand T
et al.
Novel CLCN5 mutations in patients with Dent's disease result in altered ion currents or impaired exchanger processing.
Kidney Int.,
2009
Nov
, 76 (999-1005).
75
Plans V
et al.
Physiological roles of CLC Cl(-)/H (+) exchangers in renal proximal tubules.
Pflugers Arch.,
2009
May
, 458 (23-37).
76
Zifarelli G
et al.
Conversion of the 2 Cl(-)/1 H+ antiporter ClC-5 in a NO3(-)/H+ antiporter by a single point mutation.
EMBO J.,
2009
Feb
4
, 28 (175-82).
77
Guggino SE
Can we generate new hypotheses about Dent's disease from gene analysis of a mouse model?
Exp. Physiol.,
2009
Feb
, 94 (191-6).
78
Sullivan S
et al.
Downregulation of sodium transporters and NHERF proteins in IBD patients and mouse colitis models: potential contributors to IBD-associated diarrhea.
Inflamm. Bowel Dis.,
2009
Feb
, 15 (261-74).
79
Smith AJ
et al.
Characterization of Dent's disease mutations of CLC-5 reveals a correlation between functional and cell biological consequences and protein structure.
Am. J. Physiol. Renal Physiol.,
2009
Feb
, 296 (F390-7).
80
Frishberg Y
et al.
Dent's disease manifesting as focal glomerulosclerosis: Is it the tip of the iceberg?
Pediatr. Nephrol.,
2009
Dec
, 24 (2369-73).
81
Stechman MJ
et al.
Genetic causes of hypercalciuric nephrolithiasis.
Pediatr. Nephrol.,
2009
Dec
, 24 (2321-32).
82
Duan X
et al.
ClC-5 regulates dentin development through TGF-beta1 pathway.
Arch. Oral Biol.,
2009
Dec
, 54 (1118-24).
83
Bergsdorf EY
et al.
Residues important for nitrate/proton coupling in plant and mammalian CLC transporters.
J. Biol. Chem.,
2009
Apr
24
, 284 (11184-93).
84
Mohammad-Panah R
et al.
An essential role for ClC-4 in transferrin receptor function revealed in studies of fibroblasts derived from Clcn4-null mice.
J. Cell. Sci.,
2009
Apr
15
, 122 (1229-37).
85
Li P
et al.
Phenotype and genotype of Dent's disease in three Chinese boys.
,
2009
Apr
, 14 (139-42).
86
Jouret F
et al.
CFTR and defective endocytosis: new insights in the renal phenotype of cystic fibrosis.
Pflugers Arch.,
2009
Apr
, 457 (1227-36).
87
Shrimpton AE
et al.
OCRL1 mutations in Dent 2 patients suggest a mechanism for phenotypic variability.
Nephron Physiol,
2009
, 112 (p27-36).
88
Dinour D
et al.
Truncating mutations in the chloride/proton ClC-5 antiporter gene in Seven Jewish Israeli families with Dent's 1 disease.
Nephron Clin Pract,
2009
, 112 (c262-7).
89
Wu F
et al.
Mutational analysis of CLC-5, cofilin and CLC-4 in patients with Dent's disease.
Nephron Physiol,
2009
, 112 (p53-62).
90
Hou J
et al.
ClC chloride channels in tooth germ and odontoblast-like MDPC-23 cells.
Arch. Oral Biol.,
2008
Sep
, 53 (874-8).
91
Osteen JD
et al.
Insights into the ClC-4 transport mechanism from studies of Zn2+ inhibition.
Biophys. J.,
2008
Nov
15
, 95 (4668-75).
92
Wright J
et al.
Transcriptional adaptation to Clcn5 knockout in proximal tubules of mouse kidney.
Physiol. Genomics,
2008
May
13
, 33 (341-54).
93
Sheffer-Babila S
et al.
Growth hormone improves growth rate and preserves renal function in Dent disease.
J. Pediatr. Endocrinol. Metab.,
2008
Mar
, 21 (279-86).
94
Graves AR
et al.
The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes.
Nature,
2008
Jun
5
, 453 (788-92).
95
Gailly P
et al.
A novel renal carbonic anhydrase type III plays a role in proximal tubule dysfunction.
Kidney Int.,
2008
Jul
, 74 (52-61).
96
Matsuda JJ
et al.
Overexpression of CLC-3 in HEK293T cells yields novel currents that are pH dependent.
Am. J. Physiol., Cell Physiol.,
2008
Jan
, 294 (C251-62).
97
Zdebik AA
et al.
Determinants of anion-proton coupling in mammalian endosomal CLC proteins.
J. Biol. Chem.,
2008
Feb
15
, 283 (4219-27).
98
Cho HY
et al.
Renal manifestations of Dent disease and Lowe syndrome.
Pediatr. Nephrol.,
2008
Feb
, 23 (243-9).
100
101
Levtchenko EN
et al.
[From gene to disease; Dent's disease caused by abnormalities in the CLCN5 and OCRL1 genes]
,
2007
Oct
27
, 151 (2377-80).
102
Jouret F
et al.
Cystic fibrosis is associated with a defect in apical receptor-mediated endocytosis in mouse and human kidney.
J. Am. Soc. Nephrol.,
2007
Mar
, 18 (707-18).
103
Meyer S
et al.
Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5.
Nat. Struct. Mol. Biol.,
2007
Jan
, 14 (60-7).
104
Jentsch TJ
Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters.
J. Physiol. (Lond.),
2007
Feb
1
, 578 (633-40).
105
Schmieder S
et al.
N-glycosylation of the Xenopus laevis ClC-5 protein plays a role in cell surface expression, affecting transport activity at the plasma membrane.
J. Cell. Physiol.,
2007
Feb
, 210 (479-88).
106
Ramos-Trujillo E
et al.
Molecular analysis of the CLCN5 gene in Dent's disease: first mutation identified in a patient from South America.
Clin. Nephrol.,
2007
Dec
, 68 (367-72).
107
Zifarelli G
et al.
CLC chloride channels and transporters: a biophysical and physiological perspective.
Rev. Physiol. Biochem. Pharmacol.,
2007
, 158 (23-76).
108
Ramos-Trujillo E
et al.
A missense mutation in the chloride/proton ClC-5 antiporter gene results in increased expression of an alternative mRNA form that lacks exons 10 and 11. Identification of seven new CLCN5 mutations in patients with Dent's disease.
J. Hum. Genet.,
2007
, 52 (255-61).
109
Souza-Menezes J
et al.
Absence of ClC5 in knockout mice leads to glycosuria, impaired renal glucose handling and low proximal tubule GLUT2 protein expression.
Cell. Physiol. Biochem.,
2007
, 20 (455-64).
110
Tanuma A
et al.
Functional characterization of a novel missense CLCN5 mutation causing alterations in proximal tubular endocytic machinery in Dent's disease.
Nephron Physiol,
2007
, 107 (p87-97).
111
Wellhauser L
et al.
Nucleotides bind to the C-terminus of ClC-5.
Biochem. J.,
2006
Sep
1
, 398 (289-94).
112
Ludwig M
et al.
Hypercalciuria in patients with CLCN5 mutations.
Pediatr. Nephrol.,
2006
Sep
, 21 (1241-50).
113
Tosetto E
et al.
Phenotypic and genetic heterogeneity in Dent's disease--the results of an Italian collaborative study.
Nephrol. Dial. Transplant.,
2006
Sep
, 21 (2452-63).
114
Sile S
et al.
Molecular physiology of renal ClC chloride channels/transporters.
Curr. Opin. Nephrol. Hypertens.,
2006
Sep
, 15 (511-6).
115
Abdullaev IF
et al.
Pharmacological comparison of swelling-activated excitatory amino acid release and Cl- currents in cultured rat astrocytes.
J. Physiol. (Lond.),
2006
May
1
, 572 (677-89).
116
Damodaran TV
et al.
Toxicogenomic studies of the rat brain at an early time point following acute sarin exposure.
Neurochem. Res.,
2006
Mar
, 31 (367-81).
117
van den Hove MF
et al.
The loss of the chloride channel, ClC-5, delays apical iodide efflux and induces a euthyroid goiter in the mouse thyroid gland.
Endocrinology,
2006
Mar
, 147 (1287-96).
118
Suzuki T
et al.
Intracellular localization of ClC chloride channels and their ability to form hetero-oligomers.
J. Cell. Physiol.,
2006
Mar
, 206 (792-8).
119
Hryciw DH
et al.
Regulation of albumin endocytosis by PSD95/Dlg/ZO-1 (PDZ) scaffolds. Interaction of Na+-H+ exchange regulatory factor-2 with ClC-5.
J. Biol. Chem.,
2006
Jun
9
, 281 (16068-77).
120
Maritzen T
et al.
Kidney-specific upregulation of vitamin D3 target genes in ClC-5 KO mice.
Kidney Int.,
2006
Jul
, 70 (79-87).
122
Pusch M
et al.
Channel or transporter? The CLC saga continues.
Exp. Physiol.,
2006
Jan
, 91 (149-52).
123
Carr G
et al.
Disruption of clc-5 leads to a redistribution of annexin A2 and promotes calcium crystal agglomeration in collecting duct epithelial cells.
Cell. Mol. Life Sci.,
2006
Feb
, 63 (367-77).
124
Utsch B
et al.
Novel OCRL1 mutations in patients with the phenotype of Dent disease.
Am. J. Kidney Dis.,
2006
Dec
, 48 (942.e1-14).
125
De Angeli A
et al.
The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles.
Nature,
2006
Aug
24
, 442 (939-42).
126
Maritzen T
et al.
ClC-5 does not affect megalin expression and function in the thyroid.
Thyroid,
2006
Aug
, 16 (725-30).
127
Briet M
et al.
How Bartter's and Gitelman's syndromes, and Dent's disease have provided important insights into the function of three renal chloride channels: ClC-Ka/b and ClC-5.
Nephron Physiol,
2006
, 103 (p7-13).
128
Tosetto E
et al.
Dent's disease and prevalence of renal stones in dialysis patients in Northeastern Italy.
J. Hum. Genet.,
2006
, 51 (25-30).
129
Hryciw DH
et al.
ClC-5: a chloride channel with multiple roles in renal tubular albumin uptake.
Int. J. Biochem. Cell Biol.,
2006
, 38 (1036-42).
130
Wang Y
et al.
ClC-5: role in endocytosis in the proximal tubule.
Am. J. Physiol. Renal Physiol.,
2005
Oct
, 289 (F850-62).
131
Rebelo MA
et al.
Screening for CLCN5 mutation in renal calcium stone formers patients.
An. Acad. Bras. Cienc.,
2005
Mar
, 77 (95-101).
132
Comes N
et al.
Differential expression of the human chloride channel genes in the trabecular meshwork under stress conditions.
Exp. Eye Res.,
2005
Jun
, 80 (801-13).
133
Jentsch TJ
Chloride transport in the kidney: lessons from human disease and knockout mice.
J. Am. Soc. Nephrol.,
2005
Jun
, 16 (1549-61).
134
Ernest NJ
et al.
Relative contribution of chloride channels and transporters to regulatory volume decrease in human glioma cells.
Am. J. Physiol., Cell Physiol.,
2005
Jun
, 288 (C1451-60).
135
Scheel O
et al.
Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins.
Nature,
2005
Jul
21
, 436 (424-7).
136
Picollo A
et al.
Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5.
Nature,
2005
Jul
21
, 436 (420-3).
137
Ludwig M
et al.
Functional evaluation of Dent's disease-causing mutations: implications for ClC-5 channel trafficking and internalization.
Hum. Genet.,
2005
Jul
, 117 (228-37).
138
Besbas N
et al.
CLCN5 mutation (R347X) associated with hypokalaemic metabolic alkalosis in a Turkish child: an unusual presentation of Dent's disease.
Nephrol. Dial. Transplant.,
2005
Jul
, 20 (1476-9).
139
Mummery JL
et al.
Expression of the chloride channel CLC-K in human airway epithelial cells.
Can. J. Physiol. Pharmacol.,
2005
Dec
, 83 (1123-8).
140
Cebotaru V
et al.
High citrate diet delays progression of renal insufficiency in the ClC-5 knockout mouse model of Dent's disease.
Kidney Int.,
2005
Aug
, 68 (642-52).
141
Hara-Chikuma M
et al.
Impaired acidification in early endosomes of ClC-5 deficient proximal tubule.
Biochem. Biophys. Res. Commun.,
2005
Apr
15
, 329 (941-6).
142
Cheong HI
et al.
Phenotype and genotype of Dent's disease in three Korean boys.
Pediatr. Nephrol.,
2005
Apr
, 20 (455-9).
143
Devuyst O
et al.
Chloride channels and endocytosis: new insights from Dent's disease and ClC-5 knockout mice.
Nephron Physiol,
2005
, 99 (p69-73).
144
Claverie-Martín F
et al.
The Alu insertion in the CLCN5 gene of a patient with Dent's disease leads to exon 11 skipping.
J. Hum. Genet.,
2005
, 50 (370-4).
145
Tanaka K
et al.
Reduced renal ClC-5 Cl- channel expression in spontaneously hypertensive rats with microalbuminuria.
Eur. J. Pharmacol.,
2004
Oct
6
, 501 (185-9).
146
Yanagida H
et al.
A boy with Japanese Dent's disease exhibiting abnormal calcium metabolism and osseous disorder of the spine: defective megalin expression at the brushborder of renal proximal tubules.
Clin. Nephrol.,
2004
Oct
, 62 (306-12).
147
Pham PC
et al.
Hypertonicity increases CLC-5 expression in mouse medullary thick ascending limb cells.
Am. J. Physiol. Renal Physiol.,
2004
Oct
, 287 (F747-52).
148
Mo L
et al.
ClC-5 chloride channel alters expression of the epithelial sodium channel (ENaC).
J. Membr. Biol.,
2004
Nov
, 202 (21-37).
149
Brakemeier S
et al.
Dent's disease: identification of a novel mutation in the renal chloride channel CLCN5.
Clin. Nephrol.,
2004
Nov
, 62 (387-90).
150
Sayer JA
et al.
Calcium phosphate and calcium oxalate crystal handling is dependent upon CLC-5 expression in mouse collecting duct cells.
Biochim. Biophys. Acta,
2004
May
24
, 1689 (83-90).
151
Hoopes RR
et al.
Evidence for genetic heterogeneity in Dent's disease.
Kidney Int.,
2004
May
, 65 (1615-20).
152
Parkerson KA
et al.
Biophysical and pharmacological characterization of hypotonically activated chloride currents in cortical astrocytes.
Glia,
2004
May
, 46 (419-36).
153
Santo Y
et al.
Examination of megalin in renal tubular epithelium from patients with Dent disease.
Pediatr. Nephrol.,
2004
Jun
, 19 (612-5).
154
Helip-Wooley A
et al.
Sucrose-induced vacuolation results in increased expression of cholesterol biosynthesis and lysosomal genes.
Exp. Cell Res.,
2004
Jan
1
, 292 (89-100).
155
Knohl SJ
et al.
Inherited hypercalciuric syndromes: Dent's disease (CLC-5) and familial hypomagnesemia with hypercalciuria (paracellin-1).
Semin. Nephrol.,
2004
Jan
, 24 (55-60).
156
Jouret F
et al.
Comparative ontogeny, processing, and segmental distribution of the renal chloride channel, ClC-5.
Kidney Int.,
2004
Jan
, 65 (198-208).
157
Mo L
et al.
Coexpression of complementary fragments of ClC-5 and restoration of chloride channel function in a Dent's disease mutation.
Am. J. Physiol., Cell Physiol.,
2004
Jan
, 286 (C79-89).
158
Srinivas SP
et al.
Cell volume response to hyposmotic shock and elevated cAMP in bovine trabecular meshwork cells.
Exp. Eye Res.,
2004
Jan
, 78 (15-26).
159
Jeck N
et al.
A common sequence variation of the CLCNKB gene strongly activates ClC-Kb chloride channel activity.
Kidney Int.,
2004
Jan
, 65 (190-7).
160
Hryciw DH
et al.
Nedd4-2 functionally interacts with ClC-5: involvement in constitutive albumin endocytosis in proximal tubule cells.
J. Biol. Chem.,
2004
Dec
31
, 279 (54996-5007).
161
Davies N
et al.
Chloride channel gene expression in the rabbit cornea.
Mol. Vis.,
2004
Dec
30
, 10 (1028-37).
162
Reyes JP
et al.
Novel outwardly rectifying anion conductance in Xenopus oocytes.
Pflugers Arch.,
2004
Dec
, 449 (271-7).
163
Jiang B
et al.
Expression and roles of Cl- channel ClC-5 in cell cycles of myeloid cells.
Biochem. Biophys. Res. Commun.,
2004
Apr
23
, 317 (192-7).
164
Matsuyama T
et al.
Molecular and clinical studies of Dent's disease in Japan: biochemical examination and renal ultrasonography do not predict carrier state.
Clin. Nephrol.,
2004
Apr
, 61 (231-7).
165
Langman CB
The molecular basis of kidney stones.
Curr. Opin. Pediatr.,
2004
Apr
, 16 (188-93).
166
Forino M
et al.
Identification of a novel splice site mutation of CLCN5 gene and characterization of a new alternative 5' UTR end of ClC-5 mRNA in human renal tissue and leukocytes.
J. Hum. Genet.,
2004
, 49 (53-60).
167
Thakker R
Dent's disease--a nephrolithiasis disorder associated with defective receptor-mediated endocytosis.
Bull. Mem. Acad. R. Med. Belg.,
2004
, 159 (199-211).
168
Devuyst O
Chloride channels and endocytosis: new insights from Dent's disease and CLC-5 knockout mice.
Bull. Mem. Acad. R. Med. Belg.,
2004
, 159 (212-7).
169
Tosetto E
et al.
[Dent's disease: hereditary nephrolithiasis related to defective tubular endocytosis processes]
,
2003 Nov-Dec
, 20 (578-88).
170
Carr G
et al.
A role for CBS domain 2 in trafficking of chloride channel CLC-5.
Biochem. Biophys. Res. Commun.,
2003
Oct
17
, 310 (600-5).
171
Hryciw DH
et al.
Cofilin interacts with ClC-5 and regulates albumin uptake in proximal tubule cell lines.
J. Biol. Chem.,
2003
Oct
10
, 278 (40169-76).
172
Duffy SM
et al.
Inhibition of human mast cell proliferation and survival by tamoxifen in association with ion channel modulation.
J. Allergy Clin. Immunol.,
2003
Nov
, 112 (965-72).
173
Claverie-Martín F
et al.
De novo insertion of an Alu sequence in the coding region of the CLCN5 gene results in Dent's disease.
Hum. Genet.,
2003
Nov
, 113 (480-5).
174
Furukawa T
[Various functions of ClC-type Cl- channels]
Nippon Yakurigaku Zasshi,
2003
Nov
, 122 (375-83).
175
Flores SY
et al.
The role of Nedd4/Nedd4-like dependant ubiquitylation in epithelial transport processes.
Pflugers Arch.,
2003
Jun
, 446 (334-8).
176
Christensen EI
et al.
Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules.
Proc. Natl. Acad. Sci. U.S.A.,
2003
Jul
8
, 100 (8472-7).
177
Olsen ML
et al.
Expression of voltage-gated chloride channels in human glioma cells.
J. Neurosci.,
2003
Jul
2
, 23 (5572-82).
178
Sayer JA
et al.
Disordered calcium crystal handling in antisense CLC-5-treated collecting duct cells.
Biochem. Biophys. Res. Commun.,
2003
Jan
10
, 300 (305-10).
179
Isnard-Bagnis C
et al.
Detection of ClC-3 and ClC-5 in epididymal epithelium: immunofluorescence and RT-PCR after LCM.
Am. J. Physiol., Cell Physiol.,
2003
Jan
, 284 (C220-32).
180
Günther W
et al.
The ClC-5 chloride channel knock-out mouse - an animal model for Dent's disease.
Pflugers Arch.,
2003
Jan
, 445 (456-62).
181
Mohammad-Panah R
et al.
The chloride channel ClC-4 contributes to endosomal acidification and trafficking.
J. Biol. Chem.,
2003
Aug
1
, 278 (29267-77).
182
Fong P
et al.
Characterization of vectorial chloride transport pathways in the human pancreatic duct adenocarcinoma cell line HPAF.
Am. J. Physiol., Cell Physiol.,
2003
Aug
, 285 (C433-45).
183
Hebeisen S
et al.
Anion permeation in human ClC-4 channels.
Biophys. J.,
2003
Apr
, 84 (2306-18).
184
Carballo-Trujillo I
et al.
Novel truncating mutations in the ClC-5 chloride channel gene in patients with Dent's disease.
Nephrol. Dial. Transplant.,
2003
Apr
, 18 (717-23).
185
Wu F
et al.
Modeling study of human renal chloride channel (hCLC-5) mutations suggests a structural-functional relationship.
Kidney Int.,
2003
Apr
, 63 (1426-32).
186
Moulin P
et al.
Altered polarity and expression of H+-ATPase without ultrastructural changes in kidneys of Dent's disease patients.
Kidney Int.,
2003
Apr
, 63 (1285-95).
187
Silva IV
et al.
The ClC-5 knockout mouse model of Dent's disease has renal hypercalciuria and increased bone turnover.
J. Bone Miner. Res.,
2003
Apr
, 18 (615-23).
188
Ludwig M
et al.
Four additional CLCN5 exons encode a widely expressed novel long CLC-5 isoform but fail to explain Dent's phenotype in patients without mutations in the short variant.
Kidney Blood Press. Res.,
2003
, 26 (176-84).
189
Weng TX
et al.
Oxidant and antioxidant modulation of chloride channels expressed in human retinal pigment epithelium.
Am. J. Physiol., Cell Physiol.,
2002
Sep
, 283 (C839-49).
190
Schmieder S
et al.
Cloning and characterisation of amphibian ClC-3 and ClC-5 chloride channels.
Biochim. Biophys. Acta,
2002
Nov
13
, 1566 (55-66).
191
Edmonds RD
et al.
ClC-5: ontogeny of an alternative chloride channel in respiratory epithelia.
Am. J. Physiol. Lung Cell Mol. Physiol.,
2002
Mar
, 282 (L501-7).
192
Jiang B
et al.
Expression of swelling- and/or pH-regulated chloride channels (ClC-2, 3, 4 and 5) in human leukemic and normal immune cells.
Life Sci.,
2002
Feb
8
, 70 (1383-94).
193
Sayer JA
et al.
Urinary stone formation: Dent's disease moves understanding forward.
Exp. Nephrol.,
2002
, 10 (176-81).
194
Li X
et al.
Chloride channels and hepatocellular function: prospects for molecular identification.
Annu. Rev. Physiol.,
2002
, 64 (609-33).
195
Vandewalle A
[Function of the CLC chloride channels and their implication in human pathology]
,
2002
, 23 (113-8).
196
Dołowy K
et al.
[Role and function of voltage-gated chloride channels of the CIC family and their defects leading to genetic diseases]
,
2002
, 56 (307-13).
197
Sayer JA
et al.
The voltage-dependent Cl(-) channel ClC-5 and plasma membrane Cl(-) conductances of mouse renal collecting duct cells (mIMCD-3).
J. Physiol. (Lond.),
2001
Nov
1
, 536 (769-83).
198
Weylandt KH
et al.
Human ClC-3 is not the swelling-activated chloride channel involved in cell volume regulation.
J. Biol. Chem.,
2001
May
18
, 276 (17461-7).
199
Yu AS
Role of ClC-5 in the pathogenesis of hypercalciuria: recent insights from transgenic mouse models.
Curr. Opin. Nephrol. Hypertens.,
2001
May
, 10 (415-20).
200
Sasaki Y
et al.
Expression of chloride channel, ClC-5, and its role in receptor-mediated endocytosis of albumin in OK cells.
Biochem. Biophys. Res. Commun.,
2001
Mar
23
, 282 (212-8).
201
Silva IV
et al.
ClC-5 chloride channel and kidney stones: what is the link?
Braz. J. Med. Biol. Res.,
2001
Mar
, 34 (315-23).
202
Cornejo I
et al.
Cloning, cellular distribution and functional expression of small intestinal epithelium guinea pig ClC-5 chloride channel.
Biochim. Biophys. Acta,
2001
Jun
6
, 1512 (367-74).
203
Weng TX
et al.
Expression and regulation of ClC-5 chloride channels: effects of antisense and oxidants.
Am. J. Physiol., Cell Physiol.,
2001
Jun
, 280 (C1511-20).
204
Sun XC
et al.
Studies on the expression of mRNA for anion transport related proteins in corneal endothelial cells.
Curr. Eye Res.,
2001
Jan
, 22 (1-7).
205
Takemura T
et al.
Identification of two novel mutations in the CLCN5 gene in Japanese patients with familial idiopathic low molecular weight proteinuria (Japanese Dent's disease).
Am. J. Kidney Dis.,
2001
Jan
, 37 (138-143).
206
Morimoto T
et al.
A new approach to mRNA in proximal tubule cells of patients with CLCN5 channelopathy.
Pediatr. Nephrol.,
2001
Feb
, 16 (110-2).
207
Obermüller N
et al.
An endocytosis defect as a possible cause of proteinuria in polycystic kidney disease.
Am. J. Physiol. Renal Physiol.,
2001
Feb
, 280 (F244-53).
208
Vandewalle A
et al.
Tissue distribution and subcellular localization of the ClC-5 chloride channel in rat intestinal cells.
Am. J. Physiol., Cell Physiol.,
2001
Feb
, 280 (C373-81).
209
Schmieder S
et al.
Tissue-specific N-glycosylation of the ClC-3 chloride channel.
Biochem. Biophys. Res. Commun.,
2001
Aug
24
, 286 (635-40).
210
Duffy SM
et al.
Voltage-dependent and calcium-activated ion channels in the human mast cell line HMC-1.
J. Leukoc. Biol.,
2001
Aug
, 70 (233-40).
211
Schwake M
et al.
An internalization signal in ClC-5, an endosomal Cl-channel mutated in dent's disease.
J. Biol. Chem.,
2001
Apr
13
, 276 (12049-54).
212
Scherer CR
et al.
Gene expression profiles of CLC chloride channels in animal models with different cardiovascular diseases.
Cell. Physiol. Biochem.,
2001
, 11 (321-30).
213
Thakker RV
Molecular pathology of renal chloride channels in Dent's disease and Bartter's syndrome.
Exp. Nephrol.,
2000 Nov-Dec
, 8 (351-60).
214
Pusch M
et al.
Pharmacological characterization of chloride channels belonging to the ClC family by the use of chiral clofibric acid derivatives.
Mol. Pharmacol.,
2000
Sep
, 58 (498-507).
215
Li X
et al.
Biophysical properties of ClC-3 differentiate it from swelling-activated chloride channels in Chinese hamster ovary-K1 cells.
J. Biol. Chem.,
2000
Nov
17
, 275 (35994-8).
216
Piwon N
et al.
ClC-5 Cl- -channel disruption impairs endocytosis in a mouse model for Dent's disease.
Nature,
2000
Nov
16
, 408 (369-73).
217
Uchida S
In vivo role of CLC chloride channels in the kidney.
Am. J. Physiol. Renal Physiol.,
2000
Nov
, 279 (F802-8).
218
Thakker RV
Pathogenesis of Dent's disease and related syndromes of X-linked nephrolithiasis.
Kidney Int.,
2000
Mar
, 57 (787-93).
219
Scheinman SJ
et al.
Isolated hypercalciuria with mutation in CLCN5: relevance to idiopathic hypercalciuria.
Kidney Int.,
2000
Jan
, 57 (232-9).
220
Norden AG
et al.
Tubular proteinuria defined by a study of Dent's (CLCN5 mutation) and other tubular diseases.
Kidney Int.,
2000
Jan
, 57 (240-9).
221
Silva IV
et al.
PTH regulates expression of ClC-5 chloride channel in the kidney.
Am. J. Physiol. Renal Physiol.,
2000
Feb
, 278 (F238-45).
222
Hayama A
et al.
Isolation and characterization of the human CLC-5 chloride channel gene promoter.
Gene,
2000
Dec
31
, 261 (355-64).
223
Wang SS
et al.
Mice lacking renal chloride channel, CLC-5, are a model for Dent's disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis.
Hum. Mol. Genet.,
2000
Dec
12
, 9 (2937-45).
224
Wills NK
et al.
Chloride channel expression in cultured human fetal RPE cells: response to oxidative stress.
Invest. Ophthalmol. Vis. Sci.,
2000
Dec
, 41 (4247-55).
225
Kawasaki E
et al.
mRNA expression of kidney-specific ClC-K1 chloride channel in single-cell reverse transcription-polymerase chain reaction analysis of outer hair cells of rat cochlea.
Neurosci. Lett.,
2000
Aug
18
, 290 (76-8).
226
Schwingshackl A
et al.
Involvement of ion channels in human eosinophil respiratory burst.
J. Allergy Clin. Immunol.,
2000
Aug
, 106 (272-9).
227
Igarashi T
et al.
Clinical and genetic studies of CLCN5 mutations in Japanese families with Dent's disease.
Kidney Int.,
2000
Aug
, 58 (520-7).
228
Yamamoto K
et al.
Characterization of renal chloride channel (CLCN5) mutations in Dent's disease.
J. Am. Soc. Nephrol.,
2000
Aug
, 11 (1460-8).
229
Cox JP
et al.
Renal chloride channel, CLCN5, mutations in Dent's disease.
J. Bone Miner. Res.,
1999
Sep
, 14 (1536-42).
230
Bosio M
et al.
A familial syndrome due to Arg648Stop mutation in the X-linked renal chloride channel gene.
Pediatr. Nephrol.,
1999
May
, 13 (278-83).
231
Lamb FS
et al.
Expression of CLCN voltage-gated chloride channel genes in human blood vessels.
J. Mol. Cell. Cardiol.,
1999
Mar
, 31 (657-66).
232
Tanaka K
et al.
Characterization of novel promoter and enhancer elements of the mouse homologue of the Dent disease gene, CLCN5, implicated in X-linked hereditary nephrolithiasis.
Genomics,
1999
Jun
15
, 58 (281-92).
233
Friedrich T
et al.
Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents.
J. Biol. Chem.,
1999
Jan
8
, 274 (896-902).
234
Nakazato H
et al.
Chloride channel CLCN5 mutations in Japanese children with familial idiopathic low molecular weight proteinuria.
Kidney Int.,
1999
Jan
, 55 (63-70).
235
Miyazaki H
et al.
Molecular cloning of CLC chloride channels in Oreochromis mossambicus and their functional complementation of yeast CLC gene mutant.
Biochem. Biophys. Res. Commun.,
1999
Feb
5
, 255 (175-81).
236
Devuyst O
et al.
Intra-renal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent's disease.
Hum. Mol. Genet.,
1999
Feb
, 8 (247-57).
237
Sakamoto H
et al.
Cellular and subcellular immunolocalization of ClC-5 channel in mouse kidney: colocalization with H+-ATPase.
Am. J. Physiol.,
1999
Dec
, 277 (F957-65).
238
Mo L
et al.
Comparison of amphibian and human ClC-5: similarity of functional properties and inhibition by external pH.
J. Membr. Biol.,
1999
Apr
1
, 168 (253-64).
239
von Weikersthal SF
et al.
Functional and molecular characterization of a volume-sensitive chloride current in rat brain endothelial cells.
J. Physiol. (Lond.),
1999
Apr
1
, 516 ( Pt 1) (75-84).
240
Hagos Y
et al.
Chloride conductance in HT29 cells: investigations with apical membrane vesicles and RT-PCR.
Pflugers Arch.,
1999
Apr
, 437 (724-30).
241
Thakker RV
Chloride channels in renal disease.
Adv. Nephrol. Necker Hosp.,
1999
, 29 (289-98).
242
Schmieder S
et al.
Characterization of the putative chloride channel xClC-5 expressed in Xenopus laevis oocytes and comparison with endogenous chloride currents.
J. Physiol. (Lond.),
1998
Sep
1
, 511 ( Pt 2) (379-93).
243
Hoopes RR
et al.
CLCN5 chloride-channel mutations in six new North American families with X-linked nephrolithiasis.
Kidney Int.,
1998
Sep
, 54 (698-705).
244
Morimoto T
et al.
Mutations in CLCN5 chloride channel in Japanese patients with low molecular weight proteinuria.
J. Am. Soc. Nephrol.,
1998
May
, 9 (811-8).
245
Günther W
et al.
ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells.
Proc. Natl. Acad. Sci. U.S.A.,
1998
Jul
7
, 95 (8075-80).
246
George AL
Chloride channels and endocytosis: ClC-5 makes a dent.
Proc. Natl. Acad. Sci. U.S.A.,
1998
Jul
7
, 95 (7843-5).
247
Thakker RV
The role of renal chloride channel mutations in kidney stone disease and nephrocalcinosis.
Curr. Opin. Nephrol. Hypertens.,
1998
Jul
, 7 (385-8).
248
Kelleher CL
et al.
CLCN5 mutation Ser244Leu is associated with X-linked renal failure without X-linked recessive hypophosphatemic rickets.
Kidney Int.,
1998
Jan
, 53 (31-7).
250
Obermüller N
et al.
The swelling-activated chloride channel ClC-2, the chloride channel ClC-3, and ClC-5, a chloride channel mutated in kidney stone disease, are expressed in distinct subpopulations of renal epithelial cells.
J. Clin. Invest.,
1998
Feb
1
, 101 (635-42).
251
Igarashi T
et al.
Functional characterization of renal chloride channel, CLCN5, mutations associated with Dent'sJapan disease.
Kidney Int.,
1998
Dec
, 54 (1850-6).
252
Eggermont J
The exon-intron architecture of human chloride channel genes is not conserved.
Biochim. Biophys. Acta,
1998
Apr
29
, 1397 (156-60).
253
Lindenthal S
et al.
Cloning and functional expression of a ClC Cl- channel from the renal cell line A6.
Am. J. Physiol.,
1997
Oct
, 273 (C1176-85).
254
Akuta N
et al.
Mutations of CLCN5 in Japanese children with idiopathic low molecular weight proteinuria, hypercalciuria and nephrocalcinosis.
Kidney Int.,
1997
Oct
, 52 (911-6).
255
Nakazato H
et al.
Mutations in the CLCN5 gene in Japanese patients with familial idiopathic low-molecular-weight proteinuria.
Kidney Int.,
1997
Oct
, 52 (895-900).
256
Lloyd SE
et al.
Idiopathic low molecular weight proteinuria associated with hypercalciuric nephrocalcinosis in Japanese children is due to mutations of the renal chloride channel (CLCN5).
J. Clin. Invest.,
1997
Mar
1
, 99 (967-74).
257
Oudet C
et al.
A second family with XLRH displays the mutation S244L in the CLCN5 gene.
Hum. Genet.,
1997
Jun
, 99 (781-4).
258
Lloyd SE
et al.
Characterisation of renal chloride channel, CLCN5, mutations in hypercalciuric nephrolithiasis (kidney stones) disorders.
Hum. Mol. Genet.,
1997
Aug
, 6 (1233-9).
259
Lloyd SE
et al.
A common molecular basis for three inherited kidney stone diseases.
Nature,
1996
Feb
1
, 379 (445-9).
260
Sakamoto H
et al.
Identification of a new outwardly rectifying Cl- channel that belongs to a subfamily of the ClC Cl- channels.
J. Biol. Chem.,
1996
Apr
26
, 271 (10210-6).
261
Fisher SE
et al.
Cloning and characterization of CLCN5, the human kidney chloride channel gene implicated in Dent disease (an X-linked hereditary nephrolithiasis).
Genomics,
1995
Oct
10
, 29 (598-606).
262
Steinmeyer K
et al.
Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease.
J. Biol. Chem.,
1995
Dec
29
, 270 (31172-7).