Channelpedia

PubMed 17579662


Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Kir1.1



Title: The role of the BK channel in potassium homeostasis and flow-induced renal potassium excretion.

Authors: T Rieg, V Vallon, M Sausbier, U Sausbier, B Kaissling, P Ruth, H Osswald

Journal, date & volume: Kidney Int., 2007 Sep , 72, 566-73

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/17579662


Abstract
The kidney is the major regulator of potassium homeostasis. In addition to the ROMK channels, large conductance Ca(2+)-activated K(+) (BK) channels are expressed in the apical membrane of the aldosterone sensitive distal nephron where they could contribute to renal K(+) secretion. We studied flow-induced K(+) secretion in BK channel alpha-subunit knockout (BK(-/-)) mice by acute pharmacologic blockade of vasopressin V(2) receptors, which caused similar diuresis in wild-type and knockout mice. However, wild-type mice, unlike the BK(-/-), had a concomitant increase in urinary K(+) excretion and a significant correlation between urinary flow rate and K(+) excretion. Both genotypes excreted similar urinary amounts of K(+) irrespective of K(+) diet. This was associated, however, with higher plasma aldosterone and stronger expression of ROMK in the apical membrane of the aldosterone-sensitive portions of the distal nephron in the knockout than in the wild-type under control diet and even more so with the high-K(+) diet. High-K(+) intake significantly increased the renal expression of the BK channel in the wild-type mouse. Finally, despite the higher plasma K(+) and aldosterone levels, BK(-/-) mice restrict urinary K(+) excretion when placed on a low-K(+) diet to the same extent as the wild-type. These studies suggest a role of the BK channel alpha-subunit in flow-induced K(+) secretion and in K(+) homeostasis. Higher aldosterone and an upregulation of ROMK may compensate for the absence of functional BK channels.