Kir5.1
74 literature references associated to Kir5.1
1
Brasko C
et al.
Expression of Kir4.1 and Kir5.1 inwardly rectifying potassium channels in oligodendrocytes, the myelinating cells of the CNS.
Brain Struct Funct,
2016
Feb
15
, ().
2
Wang L
et al.
Caveolin-1 Deficiency Inhibits the Basolateral K+ Channels in the Distal Convoluted Tubule and Impairs Renal K+ and Mg2+ Transport.
J. Am. Soc. Nephrol.,
2015
Nov
, 26 (2678-90).
3
Thomson SJ
et al.
Identification of the Intracellular Na+ Sensor in Slo2.1 Potassium Channels.
J. Biol. Chem.,
2015
Jun
5
, 290 (14528-35).
4
Ramos HE
et al.
Molecular insights into the possible role of Kir4.1 and Kir5.1 in thyroid hormone biosynthesis.
Horm Res Paediatr,
2015
, 83 (141-7).
5
Zheng JS
et al.
Expedient total synthesis of small to medium-sized membrane proteins via Fmoc chemistry.
J. Am. Chem. Soc.,
2014
Mar
5
, 136 (3695-704).
6
Tanemoto M
et al.
Mislocalization of K+ channels causes the renal salt wasting in EAST/SeSAME syndrome.
FEBS Lett.,
2014
Mar
18
, 588 (899-905).
7
Schirmer L
et al.
Differential loss of KIR4.1 immunoreactivity in multiple sclerosis lesions.
Ann. Neurol.,
2014
Jun
, 75 (810-28).
8
Zhang C
et al.
KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1).
Proc. Natl. Acad. Sci. U.S.A.,
2014
Aug
12
, 111 (11864-9).
9
Juang JM
et al.
Disease-targeted sequencing of ion channel genes identifies de novo mutations in patients with non-familial Brugada syndrome.
Sci Rep,
2014
, 4 (6733).
10
Zaika OL
et al.
Direct inhibition of basolateral Kir4.1/5.1 and Kir4.1 channels in the cortical collecting duct by dopamine.
Am. J. Physiol. Renal Physiol.,
2013
Nov
1
, 305 (F1277-87).
11
Harada Y
et al.
Expressional analysis of inwardly rectifying Kir4.1 channels in Noda epileptic rat (NER).
Brain Res.,
2013
Jun
23
, 1517 (141-9).
12
Zhang C
et al.
Src-family protein tyrosine kinase regulates the basolateral K channel in the distal convoluted tubule (DCT) by phosphorylation of KCNJ10.
J. Biol. Chem.,
2013
Jul
19
, ().
13
Parrock S
et al.
KCNJ10 mutations display differential sensitivity to heteromerisation with KCNJ16.
Nephron Physiol,
2013
, 123 (7-14).
14
Lin D
et al.
Inhibition of miR-205 impairs the wound-healing process in human corneal epithelial cells by targeting KIR4.1 (KCNJ10).
Invest. Ophthalmol. Vis. Sci.,
2013
, 54 (6167-78).
15
Jin X
et al.
S-Glutathionylation underscores the modulation of the heteromeric Kir4.1-Kir5.1 channel in oxidative stress.
J. Physiol. (Lond.),
2012
Nov
1
, 590 (5335-48).
16
Zhang X
et al.
The disruption of central CO2 chemosensitivity in a mouse model of Rett syndrome.
Am. J. Physiol., Cell Physiol.,
2011
Sep
, 301 (C729-38).
17
Paulais M
et al.
Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome.
Proc. Natl. Acad. Sci. U.S.A.,
2011
Jun
21
, 108 (10361-6).
18
Edvinsson JM
et al.
Potassium-dependent activation of Kir4.2 K⁺ channels.
J. Physiol. (Lond.),
2011
Dec
15
, 589 (5949-63).
19
Mulkey DK
et al.
Astrocyte chemoreceptors: mechanisms of H+ sensing by astrocytes in the retrotrapezoid nucleus and their possible contribution to respiratory drive.
Exp. Physiol.,
2011
Apr
, 96 (400-6).
20
Trapp S
et al.
Respiratory responses to hypercapnia and hypoxia in mice with genetic ablation of Kir5.1 (Kcnj16).
Exp. Physiol.,
2011
Apr
, 96 (451-9).
21
Pivonkova H
et al.
Impact of Global Cerebral Ischemia on K(+) Channel Expression and Membrane Properties of Glial Cells in the Rat Hippocampus.
,
2010
Sep
9
, ().
22
Tang X
et al.
Variable loss of Kir4.1 channel function in SeSAME syndrome mutations.
Biochem. Biophys. Res. Commun.,
2010
Sep
3
, 399 (537-41).
23
D'Adamo MC
et al.
Genetic inactivation of KCNJ16 identifies Kir5.1 as an important determinant of neuronal PCO2/pH sensitivity.
,
2010
Nov
3
, ().
24
Sala-Rabanal M
et al.
Molecular mechanisms of EAST/SeSAME syndrome mutations in Kir4.1 (KCNJ10).
J. Biol. Chem.,
2010
Nov
12
, 285 (36040-8).
25
Wenker IC
et al.
Astrocytes in the retrotrapezoid nucleus sense H+ by inhibition of a Kir4.1-Kir5.1-like current and may contribute to chemoreception by a purinergic mechanism.
J. Neurophysiol.,
2010
Dec
, 104 (3042-52).
26
Williams DM
et al.
Molecular basis of decreased Kir4.1 function in SeSAME/EAST syndrome.
J. Am. Soc. Nephrol.,
2010
Dec
, 21 (2117-29).
27
Reichold M
et al.
KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function.
Proc. Natl. Acad. Sci. U.S.A.,
2010
Aug
10
, 107 (14490-5).
28
Søe R
et al.
Modulation of Kir4.1 and Kir4.1-Kir5.1 channels by extracellular cations.
Biochim. Biophys. Acta,
2009
Sep
, 1788 (1706-13).
29
Shang L
et al.
Kir5.1 underlies long-lived subconductance levels in heteromeric Kir4.1/Kir5.1 channels from Xenopus tropicalis.
Biochem. Biophys. Res. Commun.,
2009
Oct
23
, 388 (501-5).
30
Soe R
et al.
Modulation of Kir4.1 and Kir4.1-Kir5.1 channels by small changes in cell volume.
Neurosci. Lett.,
2009
Jun
26
, 457 (80-4).
31
Sindić A
et al.
MUPP1 complexes renal K+ channels to alter cell surface expression and whole cell currents.
Am. J. Physiol. Renal Physiol.,
2009
Jul
, 297 (F36-45).
32
Rosenhouse-Dantsker A
et al.
A sodium-mediated structural switch that controls the sensitivity of Kir channels to PtdIns(4,5)P(2).
Nat. Chem. Biol.,
2008
Oct
, 4 (624-31).
33
Tanemoto M
et al.
MAGI-1a functions as a scaffolding protein for the distal renal tubular basolateral K+ channels.
J. Biol. Chem.,
2008
May
2
, 283 (12241-7).
34
Lichter-Konecki U
et al.
Gene expression profiling of astrocytes from hyperammonemic mice reveals altered pathways for water and potassium homeostasis in vivo.
Glia,
2008
Mar
, 56 (365-77).
35
Yamamoto Y
et al.
Immunohistochemical distribution of inwardly rectifying K+ channels in the medulla oblongata of the rat.
J. Vet. Med. Sci.,
2008
Mar
, 70 (265-71).
36
Lachheb S
et al.
Kir4.1/Kir5.1 channel forms the major K+ channel in the basolateral membrane of mouse renal collecting duct principal cells.
Am. J. Physiol. Renal Physiol.,
2008
Jun
, 294 (F1398-407).
37
Yamamoto Y
et al.
Expression of inwardly rectifying K+ channels in the carotid body of rat.
Histol. Histopathol.,
2008
Jul
, 23 (799-806).
38
Rojas A
et al.
Modulation of the heteromeric Kir4.1-Kir5.1 channel by multiple neurotransmitters via Galphaq-coupled receptors.
J. Cell. Physiol.,
2008
Jan
, 214 (84-95).
39
Shang L
et al.
Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels.
Eur. Biophys. J.,
2008
Feb
, 37 (165-71).
40
Rapedius M
et al.
Control of pH and PIP2 gating in heteromeric Kir4.1/Kir5.1 channels by H-Bonding at the helix-bundle crossing.
Channels (Austin),
2007 Sep-Oct
, 1 (327-30).
41
Rojas A
et al.
Protein kinase C dependent inhibition of the heteromeric Kir4.1-Kir5.1 channel.
Biochim. Biophys. Acta,
2007
Sep
, 1768 (2030-42).
42
Huang C
et al.
Interaction of the Ca2+-sensing receptor with the inwardly rectifying potassium channels Kir4.1 and Kir4.2 results in inhibition of channel function.
Am. J. Physiol. Renal Physiol.,
2007
Mar
, 292 (F1073-81).
43
Butt AM
et al.
Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions.
J. Cell. Mol. Med.,
2006 Jan-Mar
, 10 (33-44).
44
Lam HD
et al.
Modulation of Kir4.2 rectification properties and pHi-sensitive run-down by association with Kir5.1.
Biochim. Biophys. Acta,
2006
Nov
, 1758 (1837-45).
45
Benfenati V
et al.
Guanosine promotes the up-regulation of inward rectifier potassium current mediated by Kir4.1 in cultured rat cortical astrocytes.
J. Neurochem.,
2006
Jul
, 98 (430-45).
46
Pondugula SR
et al.
Glucocorticoid regulation of genes in the amiloride-sensitive sodium transport pathway by semicircular canal duct epithelium of neonatal rat.
Physiol. Genomics,
2006
Jan
12
, 24 (114-23).
47
Tanemoto M
et al.
PDZ-binding and di-hydrophobic motifs regulate distribution of Kir4.1 channels in renal cells.
J. Am. Soc. Nephrol.,
2005
Sep
, 16 (2608-14).
48
Hibino H
et al.
Differential assembly of inwardly rectifying K+ channel subunits, Kir4.1 and Kir5.1, in brain astrocytes.
J. Biol. Chem.,
2004
Oct
15
, 279 (44065-73).
49
Wu JV
et al.
An inwardly rectifying potassium channel in apical membrane of Calu-3 cells.
J. Biol. Chem.,
2004
Nov
5
, 279 (46558-65).
50
Hibino H
et al.
Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential.
Eur. J. Neurosci.,
2004
Jan
, 19 (76-84).
51
Wu J
et al.
Expression and coexpression of CO2-sensitive Kir channels in brainstem neurons of rats.
J. Membr. Biol.,
2004
Feb
1
, 197 (179-91).
52
Tanemoto M
et al.
PDZ binding motif-dependent localization of K+ channel on the basolateral side in distal tubules.
Am. J. Physiol. Renal Physiol.,
2004
Dec
, 287 (F1148-53).
53
Casamassima M
et al.
Identification of a heteromeric interaction that influences the rectification, gating, and pH sensitivity of Kir4.1/Kir5.1 potassium channels.
J. Biol. Chem.,
2003
Oct
31
, 278 (43533-40).
54
Schulze D
et al.
Phosphatidylinositol 4,5-bisphosphate (PIP2) modulation of ATP and pH sensitivity in Kir channels. A tale of an active and a silent PIP2 site in the N terminus.
J. Biol. Chem.,
2003
Mar
21
, 278 (10500-5).
55
Kurachi Y
et al.
[Molecular dynamics of K+ transport and its crucial involvement in signal transduction]
,
2003
Jun
, 23 (135-8).
56
Ishii M
et al.
Differential expression and distribution of Kir5.1 and Kir4.1 inwardly rectifying K+ channels in retina.
Am. J. Physiol., Cell Physiol.,
2003
Aug
, 285 (C260-7).
57
Konstas AA
et al.
Identification of domains that control the heteromeric assembly of Kir5.1/Kir4.0 potassium channels.
Am. J. Physiol., Cell Physiol.,
2003
Apr
, 284 (C910-7).
58
Kofuji P
et al.
Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering.
Glia,
2002
Sep
, 39 (292-303).
59
Raap M
et al.
Diversity of Kir channel subunit mRNA expressed by retinal glial cells of the guinea-pig.
Neuroreport,
2002
Jun
12
, 13 (1037-40).
60
Lourdel S
et al.
An inward rectifier K(+) channel at the basolateral membrane of the mouse distal convoluted tubule: similarities with Kir4-Kir5.1 heteromeric channels.
J. Physiol. (Lond.),
2002
Jan
15
, 538 (391-404).
61
Brochiero E
et al.
Cloning of rabbit Kir6.1, SUR2A, and SUR2B: possible candidates for a renal K(ATP) channel.
Am. J. Physiol. Renal Physiol.,
2002
Feb
, 282 (F289-300).
62
Tanemoto M
et al.
PSD-95 mediates formation of a functional homomeric Kir5.1 channel in the brain.
Neuron,
2002
Apr
25
, 34 (387-97).
63
Cui N
et al.
Modulation of the heteromeric Kir4.1-Kir5.1 channels by P(CO(2)) at physiological levels.
J. Cell. Physiol.,
2001
Nov
, 189 (229-36).
64
Derst C
et al.
Genetic and functional linkage of Kir5.1 and Kir2.1 channel subunits.
FEBS Lett.,
2001
Mar
2
, 491 (305-11).
65
Jiang C
et al.
An alternative approach to the identification of respiratory central chemoreceptors in the brainstem.
,
2001
Dec
, 129 (141-57).
66
Pessia M
et al.
Differential pH sensitivity of Kir4.1 and Kir4.2 potassium channels and their modulation by heteropolymerisation with Kir5.1.
J. Physiol. (Lond.),
2001
Apr
15
, 532 (359-67).
67
Xu H
et al.
Modulation of kir4.1 and kir5.1 by hypercapnia and intracellular acidosis.
J. Physiol. (Lond.),
2000
May
1
, 524 Pt 3 (725-35).
68
Tucker SJ
et al.
pH dependence of the inwardly rectifying potassium channel, Kir5.1, and localization in renal tubular epithelia.
J. Biol. Chem.,
2000
Jun
2
, 275 (16404-7).
69
Tanemoto M
et al.
In vivo formation of a proton-sensitive K+ channel by heteromeric subunit assembly of Kir5.1 with Kir4.1.
J. Physiol. (Lond.),
2000
Jun
15
, 525 Pt 3 (587-92).
70
Yang Z
et al.
Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH.
J. Gen. Physiol.,
2000
Jul
1
, 116 (33-45).
71
Liu Y
et al.
The human inward rectifier K(+) channel subunit kir5.1 (KCNJ16) maps to chromosome 17q25 and is expressed in kidney and pancreas.
Cytogenet. Cell Genet.,
2000
, 90 (60-3).
72
Pearson WL
et al.
Expression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver.
J. Physiol. (Lond.),
1999
Feb
1
, 514 ( Pt 3) (639-53).
73
Mouri T
et al.
Assignment of mouse inwardly rectifying potassium channel Kcnj16 to the distal region of mouse chromosome 11.
Genomics,
1998
Nov
15
, 54 (181-2).
74
Lagrutta AA
et al.
Inward rectifier potassium channels. Cloning, expression and structure-function studies.
,
1996
Sep
, 37 (651-60).