TWIK1
37 literature references associated to TWIK1
1
Jorgensen C
et al.
Lateral Fenestrations in K(+)-Channels Explored Using Molecular Dynamics Simulations.
Mol. Pharm.,
2016
May
26
, ().
2
Wiedmann F
et al.
Therapeutic targeting of two-pore-domain potassium (K2P) channels in the cardiovascular system.
Clin. Sci.,
2016
May
1
, 130 (643-50).
3
Christensen AH
et al.
The two-pore domain potassium channel, TWIK-1, has a role in the regulation of heart rate and atrial size.
J. Mol. Cell. Cardiol.,
2016
Apr
19
, 97 (24-35).
4
Yeon JT
et al.
KCNK1 inhibits osteoclastogenesis by blocking the Ca2+ oscillation and JNK-NFATc1 signaling axis.
J. Cell. Sci.,
2015
Sep
15
, 128 (3411-9).
5
Mathie A
et al.
Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain.
Pflugers Arch.,
2015
May
, 467 (931-43).
6
Decher N
et al.
The role of acid-sensitive two-pore domain potassium channels in cardiac electrophysiology: focus on arrhythmias.
Pflugers Arch.,
2015
May
, 467 (1055-67).
7
Enyedi P
et al.
Properties, regulation, pharmacology, and functions of the K₂p channel, TRESK.
Pflugers Arch.,
2015
May
, 467 (945-58).
8
Dong YY
et al.
K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac.
Science,
2015
Mar
13
, 347 (1256-9).
9
Aryal P
et al.
Influence of lipids on the hydrophobic barrier within the pore of the TWIK-1 K2P channel.
Channels (Austin),
2015
Jan
2
, 9 (44-9).
10
Baruteau AE
et al.
Inherited progressive cardiac conduction disorders.
Curr. Opin. Cardiol.,
2015
Jan
, 30 (33-9).
11
Trick JL
et al.
Molecular simulation studies of hydrophobic gating in nanopores and ion channels.
Biochem. Soc. Trans.,
2015
Apr
1
, 43 (146-50).
12
Kubota K
et al.
Hydroxy-α sanshool induces colonic motor activity in rat proximal colon: a possible involvement of KCNK9.
Am. J. Physiol. Gastrointest. Liver Physiol.,
2015
Apr
1
, 308 (G579-90).
13
Stephens RF
et al.
Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels.
Front Physiol,
2015
, 6 (153).
14
Rhodin K
et al.
Chronic periodontitis genome-wide association studies: gene-centric and gene set enrichment analyses.
J. Dent. Res.,
2014
Sep
, 93 (882-90).
15
Chen H
et al.
Altered and dynamic ion selectivity of K+ channels in cell development and excitability.
Trends Pharmacol. Sci.,
2014
Sep
, 35 (461-9).
16
Burgos P
et al.
Differential expression of two-pore domain potassium channels in rat cerebellar granule neurons.
Biochem. Biophys. Res. Commun.,
2014
Oct
31
, 453 (754-60).
17
Bichet D
et al.
Silent but not dumb: how cellular trafficking and pore gating modulate expression of TWIK1 and THIK2.
Pflugers Arch.,
2014
Oct
24
, ().
18
Czirják G
et al.
The LQLP calcineurin docking site is a major determinant of the calcium-dependent activation of human TRESK background K+ channel.
J. Biol. Chem.,
2014
Oct
24
, 289 (29506-18).
19
Rainero I
et al.
KCNK18 (TRESK) genetic variants in Italian patients with migraine.
Headache,
2014
Oct
, 54 (1515-22).
20
He L
et al.
Association of variants in KCNK17 gene with ischemic stroke and cerebral hemorrhage in a Chinese population.
J Stroke Cerebrovasc Dis,
2014
Oct
, 23 (2322-7).
21
Rahm AK
et al.
Functional characterization of zebrafish K2P18.1 (TRESK) two-pore-domain K+ channels.
Naunyn Schmiedebergs Arch. Pharmacol.,
2014
Mar
, 387 (291-300).
22
Zappia KJ
et al.
Cold hypersensitivity increases with age in mice with sickle cell disease.
Pain,
2014
Jun
3
, ().
23
Bruner JK
et al.
Identification of novel small molecule modulators of K2P18.1 two-pore potassium channel.
Eur. J. Pharmacol.,
2014
Jun
24
, ().
24
Friedrich C
et al.
Gain-of-function mutation in TASK-4 channels and severe cardiac conduction disorder.
EMBO Mol Med,
2014
Jul
, 6 (937-51).
25
Feliciangeli S
et al.
The family of K2P channels: salient structural and functional properties.
J. Physiol. (Lond.),
2014
Dec
22
, ().
26
Seyler C
et al.
Vernakalant activates human cardiac K(2P)17.1 background K(+) channels.
Biochem. Biophys. Res. Commun.,
2014
Aug
29
, 451 (415-20).
27
Schneider ER
et al.
Temperature sensitivity of two-pore (K2P) potassium channels.
Curr Top Membr,
2014
, 74 (113-33).
28
Sehgal SA
et al.
Pharmacoinformatics elucidation of potential drug targets against migraine to target ion channel protein KCNK18.
Drug Des Devel Ther,
2014
, 8 (571-81).
29
Aryal P
et al.
A hydrophobic barrier deep within the inner pore of the TWIK-1 K2P potassium channel.
Nat Commun,
2014
, 5 (4377).
30
Nishizuka M
et al.
KCNK10, a tandem pore domain potassium channel, is a regulator of mitotic clonal expansion during the early stage of adipocyte differentiation.
Int J Mol Sci,
2014
, 15 (22743-56).
31
Vanegas JM
et al.
Force transduction and lipid binding in MscL: a continuum-molecular approach.
PLoS ONE,
2014
, 9 (e113947).
32
Enyedi P
et al.
Tubulin binds to the cytoplasmic loop of TRESK background K⁺ channel in vitro.
PLoS ONE,
2014
, 9 (e97854).
33
Yarishkin O
et al.
TWIK-1 contributes to the intrinsic excitability of dentate granule cells in mouse hippocampus.
Mol Brain,
2014
, 7 (80).
34
Hwang EM
et al.
A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes.
Nat Commun,
2014
, 5 (3227).
35
Maher BH
et al.
Analysis of 3 common polymorphisms in the KCNK18 gene in an Australian Migraine case-control cohort.
Gene,
2013
Oct
10
, 528 (343-6).
36
Innamaa A
et al.
Expression and effects of modulation of the K2P potassium channels TREK-1 (KCNK2) and TREK-2 (KCNK10) in the normal human ovary and epithelial ovarian cancer.
Clin Transl Oncol,
2013
Nov
, 15 (910-8).
37
Pollema-Mays SL
et al.
Expression of background potassium channels in rat DRG is cell-specific and down-regulated in a neuropathic pain model.
Mol. Cell. Neurosci.,
2013
Nov
, 57 (1-9).