Kir3.4
286 literature references associated to Kir3.4
1
Sertedaki A
et al.
Functional characterization of two novel germline mutations of the KCNJ5 gene in hypertensive patients without Primary Aldosteronism but with ACTH-dependent aldosterone hypersecretion.
Clin. Endocrinol. (Oxf),
2016
Jun
13
, ().
2
Williams TA
et al.
Genotype-Specific Steroid Profiles Associated With Aldosterone-Producing Adenomas.
Hypertension,
2016
Jan
, 67 (139-45).
3
Nishimoto K
et al.
Case Report: Nodule Development From Subcapsular Aldosterone-Producing Cell Clusters Causes Hyperaldosteronism.
J. Clin. Endocrinol. Metab.,
2016
Jan
, 101 (6-9).
4
Zhao Y
et al.
Regulation of SCN3B/scn3b by Interleukin 2 (IL-2): IL-2 modulates SCN3B/scn3b transcript expression and increases sodium current in myocardial cells.
BMC Cardiovasc Disord,
2016
, 16 (1).
5
Holmes AP
et al.
A Regional Reduction in Ito and IKACh in the Murine Posterior Left Atrial Myocardium Is Associated with Action Potential Prolongation and Increased Ectopic Activity.
PLoS ONE,
2016
, 11 (e0154077).
6
Touhara KK
et al.
The GIRK1 subunit potentiates G protein activation of cardiac GIRK1/4 hetero-tetramers.
Elife,
2016
, 5 ().
7
Bragança B
et al.
Ion Fluxes through KCa2 (SK) and Cav1 (L-type) Channels Contribute to Chronoselectivity of Adenosine A1 Receptor-Mediated Actions in Spontaneously Beating Rat Atria.
Front Pharmacol,
2016
, 7 (45).
8
He F
et al.
Effect of small interference RNA on the acetylcholine-sensitive potassium channel in H9c2 cells.
Ann. Clin. Lab. Sci.,
2015
Winter
, 45 (58-63).
9
Kienitz MC
et al.
NCI-H295R cell line as in vitro model of hyperaldosteronism lacks functional KCNJ5 (GIRK4; Kir3.4) channels.
Mol. Cell. Endocrinol.,
2015
Sep
5
, 412 (272-80).
10
Åkerström T
et al.
Novel somatic mutations and distinct molecular signature in aldosterone-producing adenomas.
Endocr. Relat. Cancer,
2015
Oct
, 22 (735-44).
11
Bukiya AN
et al.
Cholesterol increases the open probability of cardiac KACh currents.
Biochim. Biophys. Acta,
2015
Oct
, 1848 (2406-13).
12
Fernandes-Rosa FL
et al.
Different Somatic Mutations in Multinodular Adrenals With Aldosterone-Producing Adenoma.
Hypertension,
2015
Nov
, 66 (1014-22).
13
Felizola SJ
et al.
Pre-B Lymphocyte Protein 3 (VPREB3) Expression in the Adrenal Cortex: Precedent for non-Immunological Roles in Normal and Neoplastic Human Tissues.
Endocr. Pathol.,
2015
May
, 26 (119-28).
14
Zheng FF
et al.
Clinical characteristics of somatic mutations in Chinese patients with aldosterone-producing adenoma.
Hypertension,
2015
Mar
, 65 (622-8).
15
Thomson SJ
et al.
Identification of the Intracellular Na+ Sensor in Slo2.1 Potassium Channels.
J. Biol. Chem.,
2015
Jun
5
, 290 (14528-35).
16
Fernandes-Rosa FL
et al.
Functional histopathological markers of aldosterone producing adenoma and somatic KCNJ5 mutations.
Mol. Cell. Endocrinol.,
2015
Jun
15
, 408 (220-6).
17
Monticone S
et al.
6C.03: A CASE OF SEVERE HYPERALDOSTERONISM CAUSED BY A DE NOVO KCNJ5 MUTATION.
J. Hypertens.,
2015
Jun
, 33 Suppl 1 (e79-80).
18
Duan K
et al.
Clinicopathologic Correlates of Primary Aldosteronism.
Arch. Pathol. Lab. Med.,
2015
Jul
, 139 (948-54).
19
Monticone S
et al.
A case of severe hyperaldosteronism caused by a de novo mutation affecting a critical salt bridge Kir3.4 residue.
J. Clin. Endocrinol. Metab.,
2015
Jan
, 100 (E114-8).
20
Cheng CJ
et al.
Novel KCNJ5 mutations in sporadic aldosterone-producing adenoma reduce Kir3.4 membrane abundance.
J. Clin. Endocrinol. Metab.,
2015
Jan
, 100 (E155-63).
21
Zhang J
et al.
[Sequence analysis of coding regions of KCNJ5 gene in unilateral adrenal hyperplasia].
Zhonghua Yi Xue Yi Chuan Xue Za Zhi,
2015
Feb
, 32 (21-5).
22
Xiong WH
et al.
Voriconazole, an antifungal triazol that causes visual side effects, is an inhibitor of TRPM1 and TRPM3 channels.
Invest. Ophthalmol. Vis. Sci.,
2015
Feb
, 56 (1367-73).
23
Zennaro MC
et al.
An update on novel mechanisms of primary aldosteronism.
J. Endocrinol.,
2015
Feb
, 224 (R63-77).
24
Monticone S
et al.
Immunohistochemical, genetic and clinical characterization of sporadic aldosterone-producing adenomas.
Mol. Cell. Endocrinol.,
2015
Aug
15
, 411 (146-54).
25
Lenzini L
et al.
A Meta-Analysis of Somatic KCNJ5 K(+) Channel Mutations In 1636 Patients With an Aldosterone-Producing Adenoma.
J. Clin. Endocrinol. Metab.,
2015
Aug
, 100 (E1089-95).
26
Henn MC
et al.
Adenosine Triphosphate-Sensitive Potassium Channel Kir Subunits Implicated in Cardioprotection by Diazoxide.
J Am Heart Assoc,
2015
Aug
, 4 (e002016).
27
Markou A
et al.
Stress-induced Aldosterone Hyper-Secretion in a Substantial Subset of Patients With Essential Hypertension.
J. Clin. Endocrinol. Metab.,
2015
Aug
, 100 (2857-64).
28
Lenzini L
et al.
The molecular basis of primary aldosteronism: from chimeric gene to channelopathy.
Curr Opin Pharmacol,
2015
Apr
, 21 (35-42).
29
Wang B
et al.
Prevalence and characterization of somatic mutations in Chinese aldosterone-producing adenoma patients.
Medicine (Baltimore),
2015
Apr
, 94 (e708).
30
Cannon SC
Channelopathies of skeletal muscle excitability.
Compr Physiol,
2015
Apr
, 5 (761-90).
31
Ip JC
et al.
Mutations in KCNJ5 determines presentation and likelihood of cure in primary hyperaldosteronism.
ANZ J Surg,
2015
Apr
, 85 (279-83).
32
Kitamoto T
et al.
Comparison of cardiovascular complications in patients with and without KCNJ5 gene mutations harboring aldosterone-producing adenomas.
J. Atheroscler. Thromb.,
2015
, 22 (191-200).
33
Allegue C
et al.
Genetic Analysis of Arrhythmogenic Diseases in the Era of NGS: The Complexity of Clinical Decision-Making in Brugada Syndrome.
PLoS ONE,
2015
, 10 (e0133037).
34
Wu VC
et al.
Prevalence and clinical correlates of somatic mutation in aldosterone producing adenoma-Taiwanese population.
Sci Rep,
2015
, 5 (11396).
35
Boulkroun S
et al.
Molecular and Cellular Mechanisms of Aldosterone Producing Adenoma Development.
Front Endocrinol (Lausanne),
2015
, 6 (95).
36
Kuppusamy M
et al.
A novel KCNJ5-insT149 somatic mutation close to, but outside, the selectivity filter causes resistant hypertension by loss of selectivity for potassium.
J. Clin. Endocrinol. Metab.,
2014
Sep
, 99 (E1765-73).
37
Zhang H
et al.
[Progress on genetic basis of primary aldosteronism].
Zhejiang Da Xue Xue Bao Yi Xue Ban,
2014
Sep
, 43 (612-8).
38
Felizola SJ
et al.
Voltage-gated calcium channels in the human adrenal and primary aldosteronism.
J. Steroid Biochem. Mol. Biol.,
2014
Oct
, 144 Pt B (410-6).
39
Ye G
et al.
Effects of Ca2+-activated potassium and inward rectifier potassium channel on the differentiation of endothelial progenitor cells from human peripheral blood.
Mol. Biol. Rep.,
2014
May
, 41 (3413-23).
40
Kokunai Y
et al.
A Kir3.4 mutation causes Andersen-Tawil syndrome by an inhibitory effect on Kir2.1.
Neurology,
2014
Mar
25
, 82 (1058-64).
41
Kienitz MC
et al.
Differential effects of genetically-encoded Gβγ scavengers on receptor-activated and basal Kir3.1/Kir3.4 channel current in rat atrial myocytes.
Cell. Signal.,
2014
Jun
, 26 (1182-92).
42
Fischer E
et al.
Novel genes in primary aldosteronism.
Curr Opin Endocrinol Diabetes Obes,
2014
Jun
, 21 (154-8).
43
Zhang H
et al.
Enhanced excitability of primary sensory neurons and altered gene expression of neuronal ion channels in dorsal root ganglion in paclitaxel-induced peripheral neuropathy.
Anesthesiology,
2014
Jun
, 120 (1463-75).
44
Tanwar V
et al.
Gremlin 2 promotes differentiation of embryonic stem cells to atrial fate by activation of the signaling pathway.
Stem Cells,
2014
Jul
, 32 (1774-88).
45
Rossi GP
et al.
KCNJ5 gene somatic mutations affect cardiac remodelling but do not preclude cure of high blood pressure and regression of left ventricular hypertrophy in primary aldosteronism.
J. Hypertens.,
2014
Jul
, 32 (1514-21; discussion 1522).
46
Gómez L
et al.
Association of the KCNJ5 gene with Tourette Syndrome and Attention-Deficit/Hyperactivity Disorder.
Genes Brain Behav.,
2014
Jul
, 13 (535-42).
47
Zhang Y
et al.
Glycogen Synthase Kinase-3β Inhibition Ameliorates Cardiac Parasympathetic Dysfunction in Type 1 Diabetic Akita Mice.
Diabetes,
2014
Jan
23
, ().
48
Liang B
et al.
G-protein-coupled inward rectifier potassium current contributes to ventricular repolarization.
Cardiovasc. Res.,
2014
Jan
1
, 101 (175-84).
49
Feldman RD
Aldosterone and blood pressure regulation: recent milestones on the long and winding road from electrocortin to KCNJ5, GPER, and beyond.
Hypertension,
2014
Jan
, 63 (19-21).
50
Gomez-Sanchez CE
et al.
Minireview: potassium channels and aldosterone dysregulation: is primary aldosteronism a potassium channelopathy?
Endocrinology,
2014
Jan
, 155 (47-55).
51
Li N
et al.
[Association of GIRK4 gene polymorphisms with essential hypertension in obese ethnics Uygur from southern Xinjiang].
Zhonghua Yi Xue Yi Chuan Xue Za Zhi,
2014
Feb
, 31 (88-92).
52
Dutta RK
et al.
Complementary somatic mutations of KCNJ5, ATP1A1, and ATP2B3 in sporadic aldosterone producing adrenal adenomas.
Endocr. Relat. Cancer,
2014
Feb
, 21 (L1-4).
53
Gomez-Sanchez CE
et al.
Somatic mutations of the ATP1A1 gene and aldosterone-producing adenomas.
Mol. Cell. Endocrinol.,
2014
Dec
10
, ().
54
Fernandes-Rosa FL
et al.
Genetic spectrum and clinical correlates of somatic mutations in aldosterone-producing adenoma.
Hypertension,
2014
Aug
, 64 (354-61).
55
Weeke P
et al.
Exome sequencing implicates an increased burden of rare potassium channel variants in the risk of drug-induced long QT interval syndrome.
J. Am. Coll. Cardiol.,
2014
Apr
15
, 63 (1430-7).
56
Li N
et al.
[Association of KCNJ5 gene rs3740835(C/A) and rs2604204(A/C) polymorphism with unilateral and bilateral primary aldosteronism].
Zhonghua Yi Xue Yi Chuan Xue Za Zhi,
2014
Apr
, 31 (233-7).
57
Tauber P
et al.
Pharmacology and pathophysiology of mutated KCNJ5 found in adrenal aldosterone-producing adenomas.
Endocrinology,
2014
Apr
, 155 (1353-62).
58
Murthy M
et al.
Role for germline mutations and a rare coding single nucleotide polymorphism within the KCNJ5 potassium channel in a large cohort of sporadic cases of primary aldosteronism.
Hypertension,
2014
Apr
, 63 (783-9).
59
Al-Salameh A
et al.
Overview of the genetic determinants of primary aldosteronism.
Appl Clin Genet,
2014
, 7 (67-79).
60
Adachi M
et al.
Discordant genotype-phenotype correlation in familial hyperaldosteronism type III with KCNJ5 gene mutation: a patient report and review of the literature.
Horm Res Paediatr,
2014
, 82 (138-42).
61
Kumar M
et al.
Focus on Kir7.1: physiology and channelopathy.
Channels (Austin),
2014
, 8 (488-95).
62
Sivagangabalan G
et al.
Regional ion channel gene expression heterogeneity and ventricular fibrillation dynamics in human hearts.
PLoS ONE,
2014
, 9 (e82179).
64
Mesirca P
et al.
Cardiac arrhythmia induced by genetic silencing of 'funny' (f) channels is rescued by GIRK4 inactivation.
Nat Commun,
2014
, 5 (4664).
65
Williams TA
et al.
Somatic ATP1A1, ATP2B3, and KCNJ5 Mutations in Aldosterone-Producing Adenomas.
Hypertension,
2013
Sep
30
, ().
66
Azizan EA
et al.
Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension.
Nat. Genet.,
2013
Sep
, 45 (1055-60).
67
Scholl UI
et al.
Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism.
Nat. Genet.,
2013
Sep
, 45 (1050-4).
68
Wang F
et al.
The phenotype characteristics of type 13 long QT syndrome with mutation in KCNJ5 (Kir3.4-G387R).
Heart Rhythm,
2013
Oct
, 10 (1500-6).
69
Oßwald A
et al.
Lack of influence of somatic mutations on steroid gradients during adrenal vein sampling in aldosterone-producing adenoma patients.
Eur. J. Endocrinol.,
2013
Nov
, 169 (657-63).
70
Monticone S
et al.
a Novel Y152C KCNJ5 mutation responsible for familial hyperaldosteronism type III.
J. Clin. Endocrinol. Metab.,
2013
Nov
, 98 (E1861-5).
71
Boulkroun S
et al.
KCNJ5 mutations in aldosterone producing adenoma and relationship with adrenal cortex remodeling.
Mol. Cell. Endocrinol.,
2013
May
22
, 371 (221-7).
72
Scholl UI
et al.
New insights into aldosterone-producing adenomas and hereditary aldosteronism: mutations in the K+ channel KCNJ5.
Curr. Opin. Nephrol. Hypertens.,
2013
Mar
, 22 (141-7).
73
Kaufmann K
et al.
ML297 (VU0456810), the First Potent and Selective Activator of the GIRK Potassium Channel, Displays Antiepileptic Properties in Mice.
ACS Chem Neurosci,
2013
Jun
13
, ().
74
Stowasser M
Primary aldosteronism and potassium channel mutations.
Curr Opin Endocrinol Diabetes Obes,
2013
Jun
, 20 (170-9).
75
Kiss T
et al.
Identification of diterpene alkaloids from Aconitum napellus subsp. firmum and GIRK channel activities of some Aconitum alkaloids.
Fitoterapia,
2013
Jul
19
, ().
76
Ravens U
et al.
Atrial selectivity of antiarrhythmic drugs.
J. Physiol. (Lond.),
2013
Jul
16
, ().
77
Mesirca P
et al.
The G-protein-gated K+ channel, IKACh, is required for regulation of pacemaker activity and recovery of resting heart rate after sympathetic stimulation.
J. Gen. Physiol.,
2013
Jul
15
, ().
78
Zennaro MC
et al.
Genetics of mineralocorticoid excess: an update for clinicians.
Eur. J. Endocrinol.,
2013
Jul
, 169 (R15-25).
79
Mulatero P
et al.
Role of KCNJ5 in familial and sporadic primary aldosteronism.
Nat Rev Endocrinol,
2013
Feb
, 9 (104-12).
80
Kang YA
et al.
[Expression of GIRK4 gene in kidney tissues of obese rat].
Zhongguo Yi Xue Ke Xue Yuan Xue Bao,
2013
Feb
, 35 (36-9).
81
Bingen BO
et al.
Atrium-specific Kir3.x determines inducibility, dynamics, and termination of fibrillation by regulating restitution-driven alternans.
Circulation,
2013
Dec
24
, 128 (2732-44).
82
Shao D
et al.
[Relationship between the G protein gated inward rectifier potassium channel 4 gene polymorphism and dyslipidemia of Uyghur residents].
Zhongguo Yi Xue Ke Xue Yuan Xue Bao,
2013
Dec
, 35 (611-7).
83
Velarde-Miranda C
et al.
Regulation of aldosterone biosynthesis by the Kir3.4 (KCNJ5) potassium channel.
Clin. Exp. Pharmacol. Physiol.,
2013
Dec
, 40 (895-901).
84
Mahajan R
et al.
A computational model predicts that Gβγ acts at a cleft between channel subunits to activate GIRK1 channels.
Sci Signal,
2013
Aug
13
, 6 (ra69).
85
Arnesen T
et al.
Outcome after surgery for primary hyperaldosteronism may depend on KCNJ5 tumor mutation status: a population-based study from Western Norway.
Langenbecks Arch Surg,
2013
Aug
, 398 (869-74).
86
Treiber F
et al.
Molecular basis of the facilitation of the heterooligomeric GIRK1/GIRK4 complex by cAMP dependent protein kinase.
Biochim. Biophys. Acta,
2013
Apr
, 1828 (1214-21).
87
Li NF
et al.
Genetic variations in the KCNJ5 gene in primary aldosteronism patients from Xinjiang, China.
PLoS ONE,
2013
, 8 (e54051).
88
Atkinson AJ
et al.
Functional, anatomical, and molecular investigation of the cardiac conduction system and arrhythmogenic atrioventricular ring tissue in the rat heart.
J Am Heart Assoc,
2013
, 2 (e000246).
89
Molina-Navarro MM
et al.
Differential gene expression of cardiac ion channels in human dilated cardiomyopathy.
PLoS ONE,
2013
, 8 (e79792).
90
Holmegard HN
et al.
Genetic variation in the parasympathetic signaling pathway in patients with reflex syncope.
Genet. Mol. Res.,
2013
, 12 (2601-10).
91
Oki K
et al.
The potassium channel, Kir3.4 participates in angiotensin II-stimulated aldosterone production by a human adrenocortical cell line.
Endocrinology,
2012
Sep
, 153 (4328-35).
92
Charmandari E
et al.
A Novel Point Mutation in the KCNJ5 Gene Causing Primary Hyperaldosteronism and Early-Onset Autosomal Dominant Hypertension.
,
2012
May
24
, ().
93
Azizan EA
et al.
Microarray, qPCR, and KCNJ5 sequencing of aldosterone-producing adenomas reveal differences in genotype and phenotype between zona glomerulosa- and zona fasciculata-like tumors.
J. Clin. Endocrinol. Metab.,
2012
May
, 97 (E819-29).
94
Kloukina V
et al.
G-protein-gated inwardly rectifying K+ channel 4 (GIRK4) immunoreactivity in chemically defined neurons of the hypothalamic arcuate nucleus that control body weight.
J. Chem. Neuroanat.,
2012
May
, 44 (14-23).
95
Boulkroun S
et al.
Prevalence, clinical, and molecular correlates of KCNJ5 mutations in primary aldosteronism.
Hypertension,
2012
Mar
, 59 (592-8).
96
Azizan EA
et al.
Somatic mutations affecting the selectivity filter of KCNJ5 are frequent in 2 large unselected collections of adrenal aldosteronomas.
Hypertension,
2012
Mar
, 59 (587-91).
97
Mussa A
et al.
Polyuric-polydipsic syndrome in a pediatric case of non-glucocorticoid remediable familial hyperaldosteronism.
Endocr. J.,
2012
Jun
30
, 59 (497-502).
98
Murthy M
et al.
Characterization of a novel somatic KCNJ5 mutation delI157 in an aldosterone-producing adenoma.
,
2012
Jun
29
, ().
99
Bar-Lev A
et al.
Genetics of adrenocortical disease: an update.
Curr Opin Endocrinol Diabetes Obes,
2012
Jun
, 19 (159-67).
100
Xekouki P
et al.
KCNJ5 mutations in the National Institutes of Health cohort of patients with primary hyperaldosteronism: an infrequent genetic cause of Conn's syndrome.
Endocr. Relat. Cancer,
2012
Jun
, 19 (255-60).
101
Li N
et al.
Influence of age on the association of GIRK4 with metabolic syndrome.
Ann. Clin. Biochem.,
2012
Jul
, 49 (369-76).
102
Scholl UI
et al.
Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5.
Proc. Natl. Acad. Sci. U.S.A.,
2012
Feb
14
, 109 (2533-8).
103
Deng W
et al.
Hypercholesterolemia induces up-regulation of KACh cardiac currents via a mechanism independent of phosphatidylinositol 4,5-bisphosphate and Gβγ.
J. Biol. Chem.,
2012
Feb
10
, 287 (4925-35).
104
Gomez-Sanchez CE
et al.
Mutations of the potassium channel KCNJ5 causing aldosterone-producing adenomas: one or two hits?
Hypertension,
2012
Feb
, 59 (196-7).
105
Mulatero P
et al.
KCNJ5 mutations in European families with nonglucocorticoid remediable familial hyperaldosteronism.
Hypertension,
2012
Feb
, 59 (235-40).
106
Li NF
et al.
[Association between GIRK4 gene polymorphisms and insulin resistance in Xinjiang Uygur population].
Zhonghua Yi Xue Yi Chuan Xue Za Zhi,
2012
Dec
, 29 (715-9).
107
Seccia TM
et al.
Somatic mutations in the KCNJ5 gene raise the lateralization index: implications for the diagnosis of primary aldosteronism by adrenal vein sampling.
J. Clin. Endocrinol. Metab.,
2012
Dec
, 97 (E2307-13).
108
Yamada M
et al.
KCNJ5 mutations in aldosterone- and cortisol-co-secreting adrenal adenomas.
Endocr. J.,
2012
Aug
31
, 59 (735-41).
109
Kang YA
et al.
Advances in research on G protein-coupled inward rectifier K(+) channel gene.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao,
2012
Aug
, 34 (426-30).
110
Monticone S
et al.
Effect of KCNJ5 mutations on gene expression in aldosterone-producing adenomas and adrenocortical cells.
J. Clin. Endocrinol. Metab.,
2012
Aug
, 97 (E1567-72).
111
Taguchi R
et al.
Expression and mutations of KCNJ5 mRNA in Japanese patients with aldosterone-producing adenomas.
J. Clin. Endocrinol. Metab.,
2012
Apr
, 97 (1311-9).
112
Oki K
et al.
Potassium channel mutant KCNJ5 T158A expression in HAC-15 cells increases aldosterone synthesis.
Endocrinology,
2012
Apr
, 153 (1774-82).
113
Funder JW
The genetic basis of primary aldosteronism.
Curr. Hypertens. Rep.,
2012
Apr
, 14 (120-4).
114
Wu J
et al.
Regulatory mechanisms underlying the modulation of GIRK1/GIRK4 heteromeric channels by P2Y receptors.
Pflugers Arch.,
2012
Apr
, 463 (625-33).
115
Williams TA
et al.
Visinin-like 1 is upregulated in aldosterone-producing adenomas with KCNJ5 mutations and protects from calcium-induced apoptosis.
Hypertension,
2012
Apr
, 59 (833-9).
116
Whorton MR
et al.
Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium.
Cell,
2011
Sep
30
, 147 (199-208).
118
Zennaro MC
et al.
Mutations in KCNJ5 gene cause hyperaldosteronism.
Circ. Res.,
2011
Jun
10
, 108 (1417-8).
119
Choi M
et al.
K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension.
Science,
2011
Feb
11
, 331 (768-72).
120
Jabbari J
et al.
Common polymorphisms in KCNJ5 [corrected] are associated with early-onset lone atrial fibrillation in Caucasians.
Cardiology,
2011
, 118 (116-20).
121
Kobayashi T
et al.
Inhibition of g protein-activated inwardly rectifying k channels by different classes of antidepressants.
PLoS ONE,
2011
, 6 (e28208).
122
Voigt N
et al.
Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation.
Circ Arrhythm Electrophysiol,
2010
Oct
1
, 3 (472-80).
123
Yang Y
et al.
Identification of a Kir3.4 mutation in congenital long QT syndrome.
Am. J. Hum. Genet.,
2010
Jun
11
, 86 (872-80).
124
Wagner V
et al.
Cloning and characterisation of GIRK1 variants resulting from alternative RNA editing of the KCNJ3 gene transcript in a human breast cancer cell line.
J. Cell. Biochem.,
2010
Jun
1
, 110 (598-608).
125
Nobles M
et al.
HL-1 cells express an inwardly rectifying K+ current activated via muscarinic receptors comparable to that in mouse atrial myocytes.
Pflugers Arch.,
2010
Jun
, 460 (99-108).
126
Kobayashi T
et al.
Inhibition of G-protein-activated inwardly rectifying K+ channels by the selective norepinephrine reuptake inhibitors atomoxetine and reboxetine.
Neuropsychopharmacology,
2010
Jun
, 35 (1560-9).
127
Rosenhouse-Dantsker A
et al.
Comparative analysis of cholesterol sensitivity of Kir channels: Role of the CD loop.
Channels (Austin),
2010
Jan
20
, 4 ().
128
Walsh KB
A real-time screening assay for GIRK1/4 channel blockers.
J Biomol Screen,
2010
Dec
, 15 (1229-37).
129
Balana B
et al.
Mutagenesis and functional analysis of ion channels heterologously expressed in Mammalian cells.
J Vis Exp,
2010
, ().
130
Holmegard HN
et al.
Genetic variation in the inwardly rectifying K channel subunits KCNJ3 (GIRK1) and KCNJ5 (GIRK4) in patients with sinus node dysfunction.
Cardiology,
2010
, 115 (176-81).
131
Ishihara K
et al.
Heteromeric assembly of inward rectifier channel subunit Kir2.1 with Kir3.1 and with Kir3.4.
Biochem. Biophys. Res. Commun.,
2009
Mar
20
, 380 (832-7).
132
133
Park HJ
et al.
Role of SREBP-1 in the development of parasympathetic dysfunction in the hearts of type 1 diabetic Akita mice.
Circ. Res.,
2009
Jul
31
, 105 (287-94).
134
Liu X
et al.
Silencing GIRK4 expression in human atrial myocytes by adenovirus-delivered small hairpin RNA.
Mol. Biol. Rep.,
2009
Jul
, 36 (1345-52).
135
Gaborit N
et al.
Transcriptional profiling of ion channel genes in Brugada syndrome and other right ventricular arrhythmogenic diseases.
Eur. Heart J.,
2009
Feb
, 30 (487-96).
136
Zhang C
et al.
The single nucleotide polymorphisms of Kir3.4 gene and their correlation with lone paroxysmal atrial fibrillation in Chinese Han population.
Heart Lung Circ,
2009
Aug
, 18 (257-61).
137
Robitaille M
et al.
Intracellular trafficking and assembly of specific Kir3 channel/G protein complexes.
Cell. Signal.,
2009
Apr
, 21 (488-501).
138
Hong CM
et al.
Effects of autoantibodies against M2 muscarinic acetylcholine receptors on rabbit atria in vivo.
Cardiology,
2009
, 112 (180-7).
139
Geng X
et al.
Specificity of Gbetagamma signaling depends on Galpha subunit coupling with G-protein-sensitive K(+) channels.
Pharmacology,
2009
, 84 (82-90).
140
Jin T
et al.
Stoichiometry of Kir channels with phosphatidylinositol bisphosphate.
Channels (Austin),
2008 Jan-Feb
, 2 (19-33).
141
Yang D
et al.
Expression of inwardly rectifying potassium channel subunits in native human retinal pigment epithelium.
Exp. Eye Res.,
2008
Sep
, 87 (176-83).
142
Zhao Z
et al.
Molecular basis for genistein-induced inhibition of Kir2.3 currents.
Pflugers Arch.,
2008
May
, 456 (413-23).
143
Grasser E
et al.
Subunit stoichiometry of heterologously expressed G-protein activated inwardly rectifying potassium channels analysed by fluorescence intensity ratio measurement.
Pflugers Arch.,
2008
Mar
, 455 (1017-24).
144
Perry CA
et al.
Predisposition to late-onset obesity in GIRK4 knockout mice.
Proc. Natl. Acad. Sci. U.S.A.,
2008
Jun
10
, 105 (8148-53).
145
Voigt N
et al.
Changes in I K, ACh single-channel activity with atrial tachycardia remodelling in canine atrial cardiomyocytes.
Cardiovasc. Res.,
2008
Jan
, 77 (35-43).
146
Ehrlich JR
Inward rectifier potassium currents as a target for atrial fibrillation therapy.
J. Cardiovasc. Pharmacol.,
2008
Aug
, 52 (129-35).
147
Aguado C
et al.
Cell type-specific subunit composition of G protein-gated potassium channels in the cerebellum.
J. Neurochem.,
2008
Apr
, 105 (497-511).
148
Thomas AM
et al.
Determination of phosphoinositide binding to K(+) channel subunits using a protein-lipid overlay assay.
Methods Mol. Biol.,
2008
, 491 (103-11).
149
Rosenhouse-Dantsker A
et al.
Potassium channel gating in the absence of the highly conserved glycine of the inner transmembrane helix.
Channels (Austin),
2007 May-Jun
, 1 (189-97).
150
Lopes CM
et al.
Protein kinase A modulates PLC-dependent regulation and PIP2-sensitivity of K+ channels.
Channels (Austin),
2007 Mar-Apr
, 1 (124-34).
151
Mintert E
et al.
Generation of a constitutive Na+-dependent inward-rectifier current in rat adult atrial myocytes by overexpression of Kir3.4.
J. Physiol. (Lond.),
2007
Nov
15
, 585 (3-13).
152
Eulitz D
et al.
Heterogeneous distribution of kir3 potassium channel proteins within dopaminergic neurons in the mesencephalon of the rat brain.
Cell. Mol. Neurobiol.,
2007
May
, 27 (285-302).
153
Liu B
et al.
Selective inhibition of Kir currents by antihistamines.
Eur. J. Pharmacol.,
2007
Mar
8
, 558 (21-6).
154
Kobayashi T
et al.
Inhibition by cocaine of G protein-activated inwardly rectifying K+ channels expressed in Xenopus oocytes.
Toxicol In Vitro,
2007
Jun
, 21 (656-64).
155
Calloe K
et al.
Characterizations of a loss-of-function mutation in the Kir3.4 channel subunit.
Biochem. Biophys. Res. Commun.,
2007
Dec
28
, 364 (889-95).
156
Fowler CE
et al.
Evidence for association of GABA(B) receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins.
J. Physiol. (Lond.),
2007
Apr
1
, 580 (51-65).
157
Kawano T
et al.
Interaction of Galphaq and Kir3, G protein-coupled inwardly rectifying potassium channels.
Mol. Pharmacol.,
2007
Apr
, 71 (1179-84).
158
Steinecker B
et al.
The GIRK1 brain variant GIRK1d and its functional impact on heteromultimeric GIRK channels.
J. Recept. Signal Transduct. Res.,
2007
, 27 (369-82).
159
Kobayashi T
et al.
Inhibition of G protein-activated inwardly rectifying K+ channels by the antidepressant paroxetine.
J. Pharmacol. Sci.,
2006
Nov
, 102 (278-87).
160
Iwasaki YK
et al.
A method for the simultaneous analysis of mRNA levels of multiple cardiac ion channels with a multi-probe RNase protection assay.
,
2006
Nov
, 8 (1011-5).
161
Thomas AM
et al.
Differential phosphoinositide binding to components of the G protein-gated K+ channel.
J. Membr. Biol.,
2006
May
, 211 (43-53).
162
Kobayashi T
et al.
Inhibition of G protein-activated inwardly rectifying K+ channels by ifenprodil.
Neuropsychopharmacology,
2006
Mar
, 31 (516-24).
163
Makary SM
et al.
Base of pore loop is important for rectification, activation, permeation, and block of Kir3.1/Kir3.4.
Biophys. J.,
2006
Jun
1
, 90 (4018-34).
164
Pondugula SR
et al.
Glucocorticoid regulation of genes in the amiloride-sensitive sodium transport pathway by semicircular canal duct epithelium of neonatal rat.
Physiol. Genomics,
2006
Jan
12
, 24 (114-23).
165
Chen X
et al.
Inhibition of a background potassium channel by Gq protein alpha-subunits.
Proc. Natl. Acad. Sci. U.S.A.,
2006
Feb
28
, 103 (3422-7).
166
Dhar MS
et al.
Protein expression of G-protein inwardly rectifying potassium channels (GIRK) in breast cancer cells.
BMC Physiol.,
2006
, 6 (8).
167
Rapedius M
et al.
Long chain CoA esters as competitive antagonists of phosphatidylinositol 4,5-bisphosphate activation in Kir channels.
J. Biol. Chem.,
2005
Sep
2
, 280 (30760-7).
168
Kanjhan R
et al.
Tertiapin-Q blocks recombinant and native large conductance K+ channels in a use-dependent manner.
J. Pharmacol. Exp. Ther.,
2005
Sep
, 314 (1353-61).
169
Makary SM
et al.
A difference in inward rectification and polyamine block and permeation between the Kir2.1 and Kir3.1/Kir3.4 K+ channels.
J. Physiol. (Lond.),
2005
Nov
1
, 568 (749-66).
170
Sarac R
et al.
Mutation of critical GIRK subunit residues disrupts N- and C-termini association and channel function.
J. Neurosci.,
2005
Feb
16
, 25 (1836-46).
171
Pertovaara A
et al.
RFamide-related peptides signal through the neuropeptide FF receptor and regulate pain-related responses in the rat.
Neuroscience,
2005
, 134 (1023-32).
172
Shankar H
et al.
Role of G protein-gated inwardly rectifying potassium channels in P2Y12 receptor-mediated platelet functional responses.
Blood,
2004
Sep
1
, 104 (1335-43).
173
Ennion SJ
et al.
Identification of the P2Y(12) receptor in nucleotide inhibition of exocytosis from bovine chromaffin cells.
Mol. Pharmacol.,
2004
Sep
, 66 (601-11).
174
Claydon TW
et al.
K+ activation of kir3.1/kir3.4 and kv1.4 K+ channels is regulated by extracellular charges.
Biophys. J.,
2004
Oct
, 87 (2407-18).
175
Kobayashi T
et al.
Inhibition of G protein-activated inwardly rectifying K+ channels by various antidepressant drugs.
Neuropsychopharmacology,
2004
Oct
, 29 (1841-51).
176
Fleischmann BK
et al.
Differential subunit composition of the G protein-activated inward-rectifier potassium channel during cardiac development.
J. Clin. Invest.,
2004
Oct
, 114 (994-1001).
177
Nikolov EN
et al.
Functional characterization of a small conductance GIRK channel in rat atrial cells.
Biophys. J.,
2004
Nov
, 87 (3122-36).
178
Nikolov EN
et al.
Coordination of membrane excitability through a GIRK1 signaling complex in the atria.
J. Biol. Chem.,
2004
May
28
, 279 (23630-6).
179
Mirshahi T
et al.
Molecular determinants responsible for differential cellular distribution of G protein-gated inwardly rectifying K+ channels.
J. Biol. Chem.,
2004
Mar
19
, 279 (11890-7).
180
Kawano T
et al.
Single-cell RT-PCR analysis of GIRK channels expressed in rat locus coeruleus and nucleus basalis neurons.
Neurosci. Lett.,
2004
Mar
18
, 358 (63-7).
181
Mao J
et al.
Molecular basis for the inhibition of G protein-coupled inward rectifier K(+) channels by protein kinase C.
Proc. Natl. Acad. Sci. U.S.A.,
2004
Jan
27
, 101 (1087-92).
182
Zhang L
et al.
Mechanosensitivity of GIRK channels is mediated by protein kinase C-dependent channel-phosphatidylinositol 4,5-bisphosphate interaction.
J. Biol. Chem.,
2004
Feb
20
, 279 (7037-47).
183
Plummer HK
et al.
Expression of inwardly rectifying potassium channels (GIRKs) and beta-adrenergic regulation of breast cancer cell lines.
BMC Cancer,
2004
Dec
16
, 4 (93).
184
Wellner-Kienitz MC
et al.
Voltage dependence of ATP-dependent K+ current in rat cardiac myocytes is affected by IK1 and IK(ACh).
J. Physiol. (Lond.),
2004
Dec
1
, 561 (459-69).
185
Bender K
et al.
Acute desensitization of GIRK current in rat atrial myocytes is related to K+ current flow.
J. Physiol. (Lond.),
2004
Dec
1
, 561 (471-83).
186
Ramu Y
et al.
Short variable sequence acquired in evolution enables selective inhibition of various inward-rectifier K+ channels.
Biochemistry,
2004
Aug
24
, 43 (10701-9).
187
Sarmast F
et al.
Cholinergic atrial fibrillation: I(K,ACh) gradients determine unequal left/right atrial frequencies and rotor dynamics.
Cardiovasc. Res.,
2003
Oct
1
, 59 (863-73).
188
Cader ZM
et al.
Significant linkage to migraine with aura on chromosome 11q24.
Hum. Mol. Genet.,
2003
Oct
1
, 12 (2511-7).
189
Kobayashi T
et al.
Inhibition of G protein-activated inwardly rectifying K+ channels by fluoxetine (Prozac).
Br. J. Pharmacol.,
2003
Mar
, 138 (1119-28).
190
Mao J
et al.
Inhibition of G-protein-coupled inward rectifying K+ channels by intracellular acidosis.
J. Biol. Chem.,
2003
Feb
28
, 278 (7091-8).
191
Müllner C
et al.
Single channel analysis of the regulation of GIRK1/GIRK4 channels by protein phosphorylation.
Biophys. J.,
2003
Feb
, 84 (1399-409).
192
Dibb KM
et al.
Molecular basis of ion selectivity, block, and rectification of the inward rectifier Kir3.1/Kir3.4 K(+) channel.
J. Biol. Chem.,
2003
Dec
5
, 278 (49537-48).
193
Claydon TW
et al.
The selectivity filter may act as the agonist-activated gate in the G protein-activated Kir3.1/Kir3.4 K+ channel.
J. Biol. Chem.,
2003
Dec
12
, 278 (50654-63).
194
Bosche LI
et al.
G protein-independent inhibition of GIRK current by adenosine in rat atrial myocytes overexpressing A1 receptors after adenovirus-mediated gene transfer.
J. Physiol. (Lond.),
2003
Aug
1
, 550 (707-17).
195
Ippolito DL
et al.
N-terminal tyrosine residues within the potassium channel Kir3 modulate GTPase activity of Galphai.
J. Biol. Chem.,
2002
Sep
6
, 277 (32692-6).
196
Mao J
et al.
Molecular determinants for activation of G-protein-coupled inward rectifier K+ (GIRK) channels by extracellular acidosis.
J. Biol. Chem.,
2002
Nov
29
, 277 (46166-71).
197
Mirshahi T
et al.
Gbeta residues that do not interact with Galpha underlie agonist-independent activity of K+ channels.
J. Biol. Chem.,
2002
Mar
1
, 277 (7348-55).
198
Raap M
et al.
Diversity of Kir channel subunit mRNA expressed by retinal glial cells of the guinea-pig.
Neuroreport,
2002
Jun
12
, 13 (1037-40).
199
Kobayashi T
et al.
Functional characterization of an endogenous Xenopus oocyte adenosine receptor.
Br. J. Pharmacol.,
2002
Jan
, 135 (313-22).
200
Wickman K
et al.
Structural characterization of the mouse Girk genes.
Gene,
2002
Feb
6
, 284 (241-50).
201
Ma D
et al.
Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart.
Neuron,
2002
Feb
28
, 33 (715-29).
202
He C
et al.
Identification of critical residues controlling G protein-gated inwardly rectifying K(+) channel activity through interactions with the beta gamma subunits of G proteins.
J. Biol. Chem.,
2002
Feb
22
, 277 (6088-96).
203
Marker CL
et al.
Hyperalgesia and blunted morphine analgesia in G protein-gated potassium channel subunit knockout mice.
Neuroreport,
2002
Dec
20
, 13 (2509-13).
204
Bettahi I
et al.
Contribution of the Kir3.1 subunit to the muscarinic-gated atrial potassium channel IKACh.
J. Biol. Chem.,
2002
Dec
13
, 277 (48282-8).
205
Dobrzynski H
et al.
Effects of ACh and adenosine mediated by Kir3.1 and Kir3.4 on ferret ventricular cells.
Am. J. Physiol. Heart Circ. Physiol.,
2002
Aug
, 283 (H615-30).
206
Choi S
et al.
Functional expression of a novel ginsenoside Rf binding protein from rat brain mRNA in Xenopus laevis oocytes.
Mol. Pharmacol.,
2002
Apr
, 61 (928-35).
207
Dobrzynski H
et al.
Distribution of the muscarinic K+ channel proteins Kir3.1 and Kir3.4 in the ventricle, atrium, and sinoatrial node of heart.
J. Histochem. Cytochem.,
2001
Oct
, 49 (1221-34).
208
Dobrev D
et al.
Molecular basis of downregulation of G-protein-coupled inward rectifying K(+) current (I(K,ACh) in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced I(K,ACh) and muscarinic receptor-mediated shortening of action potentials.
Circulation,
2001
Nov
20
, 104 (2551-7).
209
Rogalski SL
et al.
Eicosanoids inhibit the G-protein-gated inwardly rectifying potassium channel (Kir3) at the Na+/PIP2 gating site.
J. Biol. Chem.,
2001
May
4
, 276 (14855-60).
210
Brundel BJ
et al.
Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels.
J. Am. Coll. Cardiol.,
2001
Mar
1
, 37 (926-32).
211
Shui Z
et al.
Evidence of involvement of GIRK1/GIRK4 in long-term desensitization of cardiac muscarinic K+ channels.
Am. J. Physiol. Heart Circ. Physiol.,
2001
Jun
, 280 (H2554-62).
212
Gregerson KA
et al.
Identification of G protein-coupled, inward rectifier potassium channel gene products from the rat anterior pituitary gland.
Endocrinology,
2001
Jul
, 142 (2820-32).
213
Hill JJ
et al.
Inhibition of a Gi-activated potassium channel (GIRK1/4) by the Gq-coupled m1 muscarinic acetylcholine receptor.
J. Biol. Chem.,
2001
Feb
23
, 276 (5505-10).
214
Ruiz-Velasco V
et al.
Functional expression and FRET analysis of green fluorescent proteins fused to G-protein subunits in rat sympathetic neurons.
J. Physiol. (Lond.),
2001
Dec
15
, 537 (679-92).
215
Bender K
et al.
Overexpression of monomeric and multimeric GIRK4 subunits in rat atrial myocytes removes fast desensitization and reduces inward rectification of muscarinic K(+) current (I(K(ACh))). Evidence for functional homomeric GIRK4 channels.
J. Biol. Chem.,
2001
Aug
3
, 276 (28873-80).
216
Inanobe A
et al.
Interaction between the RGS domain of RGS4 with G protein alpha subunits mediates the voltage-dependent relaxation of the G protein-gated potassium channel.
J. Physiol. (Lond.),
2001
Aug
15
, 535 (133-43).
217
Weigl LG
et al.
G protein-gated inwardly rectifying potassium channels are targets for volatile anesthetics.
Mol. Pharmacol.,
2001
Aug
, 60 (282-9).
218
Corey S
et al.
The Stoichiometry of Gbeta gamma binding to G-protein-regulated inwardly rectifying K+ channels (GIRKs).
J. Biol. Chem.,
2001
Apr
6
, 276 (11409-13).
219
Pabon A
et al.
Glycosylation of GIRK1 at Asn119 and ROMK1 at Asn117 has different consequences in potassium channel function.
J. Biol. Chem.,
2000
Sep
29
, 275 (30677-82).
220
Medina I
et al.
A switch mechanism for G beta gamma activation of I(KACh).
J. Biol. Chem.,
2000
Sep
22
, 275 (29709-16).
221
Dibb KM
et al.
Cs+ block of the cardiac muscarinic K+ channel, GIRK1/GIRK4, is not dependent on the aspartate residue at position 173.
Pflugers Arch.,
2000
Sep
, 440 (740-4).
222
Mark MD
et al.
G-protein mediated gating of inward-rectifier K+ channels.
Eur. J. Biochem.,
2000
Oct
, 267 (5830-6).
223
Lancaster MK
et al.
Residues and mechanisms for slow activation and Ba2+ block of the cardiac muscarinic K+ channel, Kir3.1/Kir3.4.
J. Biol. Chem.,
2000
Nov
17
, 275 (35831-9).
224
Bard J
et al.
Single channel studies of inward rectifier potassium channel regulation by muscarinic acetylcholine receptors.
J. Gen. Physiol.,
2000
Nov
, 116 (645-52).
225
Yakubovich D
et al.
Slow modal gating of single G protein-activated K+ channels expressed in Xenopus oocytes.
J. Physiol. (Lond.),
2000
May
1
, 524 Pt 3 (737-55).
226
Müllner C
et al.
Heterologous facilitation of G protein-activated K(+) channels by beta-adrenergic stimulation via cAMP-dependent protein kinase.
J. Gen. Physiol.,
2000
May
, 115 (547-58).
227
Wulfsen I
et al.
Expression of mRNA for voltage-dependent and inward-rectifying K channels in GH3/B6 cells and rat pituitary.
J. Neuroendocrinol.,
2000
Mar
, 12 (263-72).
228
Ivanina T
et al.
Expression of GIRK (Kir3.1/Kir3.4) channels in mouse fibroblast cells with and without beta1 integrins.
FEBS Lett.,
2000
Jan
28
, 466 (327-32).
229
Nehring RB
et al.
Neuronal inwardly rectifying K(+) channels differentially couple to PDZ proteins of the PSD-95/SAP90 family.
J. Neurosci.,
2000
Jan
1
, 20 (156-62).
230
Bradley KK
et al.
Kir3.1/3.2 encodes an I(KACh)-like current in gastrointestinal myocytes.
Am. J. Physiol. Gastrointest. Liver Physiol.,
2000
Feb
, 278 (G289-96).
231
Lohberger B
et al.
IK.ACh activation by arachidonic acid occurs via a G-protein-independent pathway mediated by the GIRK1 subunit.
Pflugers Arch.,
2000
Dec
, 441 (251-6).
232
Rogalski SL
et al.
TrkB activation by brain-derived neurotrophic factor inhibits the G protein-gated inward rectifier Kir3 by tyrosine phosphorylation of the channel.
J. Biol. Chem.,
2000
Aug
18
, 275 (25082-8).
233
Lei Q
et al.
Activation and inhibition of G protein-coupled inwardly rectifying potassium (Kir3) channels by G protein beta gamma subunits.
Proc. Natl. Acad. Sci. U.S.A.,
2000
Aug
15
, 97 (9771-6).
234
Wickman K
et al.
Brain localization and behavioral impact of the G-protein-gated K+ channel subunit GIRK4.
J. Neurosci.,
2000
Aug
1
, 20 (5608-15).
235
Kobayashi T
et al.
Inhibition by various antipsychotic drugs of the G-protein-activated inwardly rectifying K(+) (GIRK) channels expressed in xenopus oocytes.
Br. J. Pharmacol.,
2000
Apr
, 129 (1716-22).
236
Crossen PE
et al.
Identification of amplified genes in a patient with acute myeloid leukemia and double minute chromosomes.
Cancer Genet. Cytogenet.,
1999
Sep
, 113 (126-33).
237
McAllister SD
et al.
Cannabinoid receptors can activate and inhibit G protein-coupled inwardly rectifying potassium channels in a xenopus oocyte expression system.
J. Pharmacol. Exp. Ther.,
1999
Nov
, 291 (618-26).
238
Jelacic TM
et al.
Functional expression and characterization of G-protein-gated inwardly rectifying K+ channels containing GIRK3.
J. Membr. Biol.,
1999
May
15
, 169 (123-9).
239
Jin W
et al.
Distinct domains of the CB1 cannabinoid receptor mediate desensitization and internalization.
J. Neurosci.,
1999
May
15
, 19 (3773-80).
240
Owen JM
et al.
Effect of extracellular cations on the inward rectifying K+ channels Kir2.1 and Kir3.1/Kir3.4.
Exp. Physiol.,
1999
May
, 84 (471-88).
241
Otero AS
et al.
Wild-type NM23-H1, but not its S120 mutants, suppresses desensitization of muscarinic potassium current.
Biochim. Biophys. Acta,
1999
Mar
8
, 1449 (157-68).
242
Morishige K
et al.
Secretagogue-induced exocytosis recruits G protein-gated K+ channels to plasma membrane in endocrine cells.
J. Biol. Chem.,
1999
Mar
19
, 274 (7969-74).
243
Stevens EB
et al.
Bombesin receptors inhibit G protein-coupled inwardly rectifying K+ channels expressed in Xenopus oocytes through a protein kinase C-dependent pathway.
Mol. Pharmacol.,
1999
Jun
, 55 (1020-7).
244
Zhang H
et al.
Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions.
Nat. Cell Biol.,
1999
Jul
, 1 (183-8).
245
Kennedy ME
et al.
GIRK4 confers appropriate processing and cell surface localization to G-protein-gated potassium channels.
J. Biol. Chem.,
1999
Jan
22
, 274 (2571-82).
246
Yoshimoto Y
et al.
Somatostatin induces hyperpolarization in pancreatic islet alpha cells by activating a G protein-gated K+ channel.
FEBS Lett.,
1999
Feb
12
, 444 (265-9).
247
Rohács T
et al.
Distinct specificities of inwardly rectifying K(+) channels for phosphoinositides.
J. Biol. Chem.,
1999
Dec
17
, 274 (36065-72).
248
He C
et al.
Identification of a potassium channel site that interacts with G protein betagamma subunits to mediate agonist-induced signaling.
J. Biol. Chem.,
1999
Apr
30
, 274 (12517-24).
249
Ho BY
et al.
Coupling of the expressed cannabinoid CB1 and CB2 receptors to phospholipase C and G protein-coupled inwardly rectifying K+ channels.
Recept. Channels,
1999
, 6 (363-74).
250
Smith KE
et al.
Cloned human and rat galanin GALR3 receptors. Pharmacology and activation of G-protein inwardly rectifying K+ channels.
J. Biol. Chem.,
1998
Sep
4
, 273 (23321-6).
251
Silverman SK
et al.
Asymmetrical contributions of subunit pore regions to ion selectivity in an inward rectifier K+ channel.
Biophys. J.,
1998
Sep
, 75 (1330-9).
252
Corey S
et al.
Identification of native atrial G-protein-regulated inwardly rectifying K+ (GIRK4) channel homomultimers.
J. Biol. Chem.,
1998
Oct
16
, 273 (27499-504).
253
Kovoor A
et al.
Agonist induced homologous desensitization of mu-opioid receptors mediated by G protein-coupled receptor kinases is dependent on agonist efficacy.
Mol. Pharmacol.,
1998
Oct
, 54 (704-11).
254
Krapivinsky G
et al.
Gbeta binding to GIRK4 subunit is critical for G protein-gated K+ channel activation.
J. Biol. Chem.,
1998
Jul
3
, 273 (16946-52).
255
Ji S
et al.
Mechanosensitivity of the cardiac muscarinic potassium channel. A novel property conferred by Kir3.4 subunit.
J. Biol. Chem.,
1998
Jan
16
, 273 (1324-8).
256
Wickman K
et al.
Abnormal heart rate regulation in GIRK4 knockout mice.
Neuron,
1998
Jan
, 20 (103-14).
257
Corey S
et al.
Number and stoichiometry of subunits in the native atrial G-protein-gated K+ channel, IKACh.
J. Biol. Chem.,
1998
Feb
27
, 273 (5271-8).
258
McPhee JC
et al.
Evidence for a functional interaction between integrins and G protein-activated inward rectifier K+ channels.
J. Biol. Chem.,
1998
Dec
25
, 273 (34696-702).
259
Murer G
et al.
An immunocytochemical study on the distribution of two G-protein-gated inward rectifier potassium channels (GIRK2 and GIRK4) in the adult rat brain.
Neuroscience,
1997
Sep
, 80 (345-57).
260
Kovoor A
et al.
Mu and delta opioid receptors are differentially desensitized by the coexpression of beta-adrenergic receptor kinase 2 and beta-arrestin 2 in xenopus oocytes.
J. Biol. Chem.,
1997
Oct
31
, 272 (27605-11).
261
Thomas SL
et al.
Tissue-specific regulation of G-protein-coupled inwardly rectifying K+ channel expression by muscarinic receptor activation in ovo.
J. Biol. Chem.,
1997
Nov
21
, 272 (29958-62).
262
Luchian T
et al.
A C-terminal peptide of the GIRK1 subunit directly blocks the G protein-activated K+ channel (GIRK) expressed in Xenopus oocytes.
J. Physiol. (Lond.),
1997
Nov
15
, 505 ( Pt 1) (13-22).
263
Chan KW
et al.
Specific regions of heteromeric subunits involved in enhancement of G protein-gated K+ channel activity.
J. Biol. Chem.,
1997
Mar
7
, 272 (6548-55).
264
Wickman K
et al.
Partial structure, chromosome localization, and expression of the mouse Girk4 gene.
Genomics,
1997
Mar
15
, 40 (395-401).
265
Ehrengruber MU
et al.
Activation of heteromeric G protein-gated inward rectifier K+ channels overexpressed by adenovirus gene transfer inhibits the excitability of hippocampal neurons.
Proc. Natl. Acad. Sci. U.S.A.,
1997
Jun
24
, 94 (7070-5).
266
Kim D
et al.
ATP-dependent regulation of a G protein-coupled K+ channel (GIRK1/GIRK4) expressed in oocytes.
Am. J. Physiol.,
1997
Jan
, 272 (H195-206).
267
Schoots O
et al.
Genomic organization and promoter analysis of the human G-protein-coupled K+ channel Kir3.1 (KCNJ3/HGIRK1).
Genomics,
1997
Feb
1
, 39 (279-88).
268
Vivaudou M
et al.
Probing the G-protein regulation of GIRK1 and GIRK4, the two subunits of the KACh channel, using functional homomeric mutants.
J. Biol. Chem.,
1997
Dec
12
, 272 (31553-60).
269
Huang CL
et al.
Binding of the G protein betagamma subunit to multiple regions of G protein-gated inward-rectifying K+ channels.
FEBS Lett.,
1997
Apr
1
, 405 (291-8).
270
Wischmeyer E
et al.
Subunit interactions in the assembly of neuronal Kir3.0 inwardly rectifying K+ channels.
Mol. Cell. Neurosci.,
1997
, 9 (194-206).
271
Karschin C
et al.
Ontogeny of gene expression of Kir channel subunits in the rat.
Mol. Cell. Neurosci.,
1997
, 10 (131-48).
272
McKinnon LA
et al.
Regulation of muscarinic receptor expression and function in cultured cells and in knock-out mice.
Life Sci.,
1997
, 60 (1101-4).
273
Lagrutta AA
et al.
Inward rectifier potassium channels. Cloning, expression and structure-function studies.
,
1996
Sep
, 37 (651-60).
274
Matthes H
et al.
Functional selectivity of orphanin FQ for its receptor coexpressed with potassium channel subunits in Xenopus laevis oocytes.
Mol. Pharmacol.,
1996
Sep
, 50 (447-50).
275
Saugstad JA
et al.
Metabotropic glutamate receptors activate G-protein-coupled inwardly rectifying potassium channels in Xenopus oocytes.
J. Neurosci.,
1996
Oct
1
, 16 (5979-85).
276
Silverman SK
et al.
Subunit stoichiometry of a heteromultimeric G protein-coupled inward-rectifier K+ channel.
J. Biol. Chem.,
1996
Nov
29
, 271 (30524-8).
277
Chan KW
et al.
Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit.
Proc. Natl. Acad. Sci. U.S.A.,
1996
Nov
26
, 93 (14193-8).
278
Sui JL
et al.
Na+ activation of the muscarinic K+ channel by a G-protein-independent mechanism.
J. Gen. Physiol.,
1996
Nov
, 108 (381-91).
279
Chan KW
et al.
A recombinant inwardly rectifying potassium channel coupled to GTP-binding proteins.
J. Gen. Physiol.,
1996
Mar
, 107 (381-97).
280
Rimland JM
et al.
Coexpression with potassium channel subunits used to clone the Y2 receptor for neuropeptide Y.
Mol. Pharmacol.,
1996
Mar
, 49 (387-90).
281
Karschin C
et al.
IRK(1-3) and GIRK(1-4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain.
J. Neurosci.,
1996
Jun
1
, 16 (3559-70).
282
Spauschus A
et al.
A G-protein-activated inwardly rectifying K+ channel (GIRK4) from human hippocampus associates with other GIRK channels.
J. Neurosci.,
1996
Feb
1
, 16 (930-8).
283
Silverman SK
et al.
A regenerative link in the ionic fluxes through the weaver potassium channel underlies the pathophysiology of the mutation.
Proc. Natl. Acad. Sci. U.S.A.,
1996
Dec
24
, 93 (15429-34).
284
Doupnik CA
et al.
Time resolved kinetics of direct G beta 1 gamma 2 interactions with the carboxyl terminus of Kir3.4 inward rectifier K+ channel subunits.
Neuropharmacology,
1996
, 35 (923-31).
285
Duprat F
et al.
Heterologous multimeric assembly is essential for K+ channel activity of neuronal and cardiac G-protein-activated inward rectifiers.
Biochem. Biophys. Res. Commun.,
1995
Jul
17
, 212 (657-63).
286
Tucker SJ
et al.
Assignment of KATP-1, the cardiac ATP-sensitive potassium channel gene (KCNJ5), to human chromosome 11q24.
Genomics,
1995
Jul
1
, 28 (127-8).