Nav1.5
1259 literature references associated to Nav1.5
1
Aydar E
et al.
Sigma-1 receptors modulate neonatal Nav1.5 ion channels in breast cancer cell lines.
Eur. Biophys. J.,
2016
May
9
, ().
2
Yang J
et al.
FGF13 modulates the gating properties of the cardiac sodium channel Nav1.5 in an isoform-specific manner.
Channels (Austin),
2016
May
31
, (1-11).
3
Hirano-Iwata A
et al.
Reconstitution of Human Ion Channels into Solvent-free Lipid Bilayers Enhanced by Centrifugal Forces.
Biophys. J.,
2016
May
24
, 110 (2207-15).
4
Zeng H
et al.
Use of FDSS/μCell imaging platform for preclinical cardiac electrophysiology safety screening of compounds in human induced pluripotent stem cell-derived cardiomyocytes.
J Pharmacol Toxicol Methods,
2016
May
21
, ().
5
Schilling JM
et al.
Electrophysiology and metabolism of caveolin-3-overexpressing mice.
Basic Res. Cardiol.,
2016
May
, 111 (28).
6
Daumy X
et al.
Targeted resequencing identifies TRPM4 as a major gene predisposing to progressive familial heart block type I.
Int. J. Cardiol.,
2016
Mar
15
, 207 (349-58).
7
Tao H
et al.
Molecular determinant for the tarantula toxin Jingzhaotoxin-I slowing the fast inactivation of voltage-gated sodium channels.
Toxicon,
2016
Mar
1
, 111 (13-21).
8
Zhao Y
et al.
Identification of novel mutations including a double mutation in patients with inherited cardiomyopathy by a targeted sequencing approach using the Ion Torrent PGM system.
Int. J. Mol. Med.,
2016
Jun
, 37 (1511-20).
9
Zaklyazminskaya E
et al.
The role of mutations in the SCN5A gene in cardiomyopathies.
Biochim. Biophys. Acta,
2016
Jul
, 1863 (1799-805).
10
Sottas V
et al.
Negative-dominance phenomenon with genetic variants of the cardiac sodium channel Nav1.5.
Biochim. Biophys. Acta,
2016
Jul
, 1863 (1791-8).
11
Van Driest SL
et al.
Association of Arrhythmia-Related Genetic Variants With Phenotypes Documented in Electronic Medical Records.
JAMA,
2016
Jan
5
, 315 (47-57).
12
Wang HG
et al.
A novel NaV1.5 voltage sensor mutation associated with severe atrial and ventricular arrhythmias.
J. Mol. Cell. Cardiol.,
2016
Jan
19
, 92 (52-62).
13
Mohammed FH
et al.
Blockade of voltage-gated sodium channels inhibits invasion of endocrine-resistant breast cancer cells.
Int. J. Oncol.,
2016
Jan
, 48 (73-83).
14
Neubauer J
et al.
Post-mortem whole-exome sequencing (WES) with a focus on cardiac disease-associated genes in five young sudden unexplained death (SUD) cases.
Int. J. Legal Med.,
2016
Feb
4
, ().
15
Poulet C
et al.
Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation.
Physiol Rep,
2016
Feb
, 4 ().
16
Crumb WJ
et al.
An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel.
J Pharmacol Toxicol Methods,
2016
Apr
6
, ().
17
Shcherbatko A
et al.
Engineering Highly Potent and Selective Microproteins Against Nav1.7 Sodium Channel for Treatment of Pain.
J. Biol. Chem.,
2016
Apr
22
, ().
18
Nassal DM
et al.
Myocardial KChIP2 Expression in Guinea Pig Resolves an Expanded Electrophysiologic Role.
PLoS ONE,
2016
, 11 (e0146561).
19
Zhao Y
et al.
Regulation of SCN3B/scn3b by Interleukin 2 (IL-2): IL-2 modulates SCN3B/scn3b transcript expression and increases sodium current in myocardial cells.
BMC Cardiovasc Disord,
2016
, 16 (1).
20
Portero V
et al.
Dysfunction of the Voltage-Gated K+ Channel β2 Subunit in a Familial Case of Brugada Syndrome.
J Am Heart Assoc,
2016
, 5 ().
22
Choi JI
et al.
α1-Syntrophin Variant Identified in Drug-Induced Long QT Syndrome Increases Late Sodium Current.
PLoS ONE,
2016
, 11 (e0152355).
23
Leo-Macias A
et al.
Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc.
Nat Commun,
2016
, 7 (10342).
24
Hertz CL
et al.
Genetic investigations of sudden unexpected deaths in infancy using next-generation sequencing of 100 genes associated with cardiac diseases.
Eur. J. Hum. Genet.,
2015
Sep
9
, ().
25
Eberhardt E
et al.
Pattern of Functional TTX-Resistant Sodium Channels Reveals a Developmental Stage of Human iPSC- and ESC-Derived Nociceptors.
Stem Cell Reports,
2015
Sep
8
, 5 (305-13).
26
Climent AM
et al.
The Role of Atrial Tissue Remodeling on Rotor Dynamics: An In-Vitro Study.
Am. J. Physiol. Heart Circ. Physiol.,
2015
Sep
25
, (ajpheart.00055.2015).
27
Neshatian L
et al.
Ranolazine inhibits voltage-gated mechanosensitive sodium channels in human colon circular smooth muscle cells.
Am. J. Physiol. Gastrointest. Liver Physiol.,
2015
Sep
15
, 309 (G506-12).
28
Abdelsayed M
et al.
Differential thermosensitivity in mixed syndrome cardiac sodium channel mutants.
J. Physiol. (Lond.),
2015
Sep
15
, 593 (4201-23).
29
Berghuis B
et al.
Complex SCN8A DNA-abnormalities in an individual with therapy resistant absence epilepsy.
Epilepsy Res.,
2015
Sep
, 115 (141-4).
30
Aktas CC
et al.
In vitro effects of phenytoin and DAPT on MDA-MB-231 breast cancer cells.
Acta Biochim. Biophys. Sin. (Shanghai),
2015
Sep
, 47 (680-6).
31
Farrugia A
et al.
Targeted next generation sequencing application in cardiac channelopathies: Analysis of a cohort of autopsy-negative sudden unexplained deaths.
Forensic Sci. Int.,
2015
Sep
, 254 (5-11).
32
Musa H
et al.
SCN5A variant that blocks fibroblast growth factor homologous factor regulation causes human arrhythmia.
Proc. Natl. Acad. Sci. U.S.A.,
2015
Oct
6
, 112 (12528-33).
33
Nunn LM
et al.
Diagnostic yield of molecular autopsy in patients with sudden arrhythmic death syndrome using targeted exome sequencing.
Europace,
2015
Oct
25
, ().
34
Endo R
et al.
Carvedilol Suppresses Apoptosis and Ion Channel Remodelling of HL-1 Cardiac Myocytes Expressing E334K cMyBPC.
Drug Res (Stuttg),
2015
Oct
19
, ().
35
Beyder A
et al.
Expression and function of the Scn5a-encoded voltage-gated sodium channel NaV 1.5 in the rat jejunum.
Neurogastroenterol. Motil.,
2015
Oct
13
, ().
36
Detta N
et al.
The multi-faceted aspects of the complex cardiac Nav1.5 protein in membrane function and pathophysiology.
Biochim. Biophys. Acta,
2015
Oct
, 1854 (1502-9).
37
Chiang DY
et al.
Loss-of-Function SCN5A Mutations Associated With Sinus Node Dysfunction, Atrial Arrhythmias, and Poor Pacemaker Capture.
Circ Arrhythm Electrophysiol,
2015
Oct
, 8 (1105-12).
38
Murray JK
et al.
Sustained inhibition of the NaV1.7 sodium channel by engineered dimers of the domain II binding peptide GpTx-1.
Bioorg. Med. Chem. Lett.,
2015
Nov
1
, 25 (4866-71).
39
Han Z
et al.
The effects of A-803467 on cardiac Nav1.5 channels.
Eur. J. Pharmacol.,
2015
May
5
, 754 (52-60).
40
Le Scouarnec S
et al.
Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome.
Hum. Mol. Genet.,
2015
May
15
, 24 (2757-63).
41
Chahine M
Gating pore current is a novel biophysical defect of Nav1.5 mutations associated with unusual cardiac arrhythmias and dilation.
Future Cardiol,
2015
May
, 11 (287-91).
42
Zhu JF
et al.
Novel heterozygous mutation c.4282G>T in the SCN5A gene in a family with Brugada syndrome.
Exp Ther Med,
2015
May
, 9 (1639-1645).
43
Marionneau C
et al.
Regulation of the cardiac Na+ channel NaV1.5 by post-translational modifications.
J. Mol. Cell. Cardiol.,
2015
May
, 82 (36-47).
44
Liu GX
et al.
Overexpression of SCN5A in mouse heart mimics human syndrome of enhanced atrioventricular nodal conduction.
Heart Rhythm,
2015
May
, 12 (1036-45).
45
Tan BY
et al.
A Brugada syndrome proband with compound heterozygote SCN5A mutations identified from a Chinese family in Singapore.
Europace,
2015
Mar
31
, ().
46
Mishra S
et al.
Contribution of sodium channel neuronal isoform Nav1.1 to late sodium current in ventricular myocytes from failing hearts.
J. Physiol. (Lond.),
2015
Mar
15
, 593 (1409-27).
47
Murray JK
et al.
Engineering Potent and Selective Analogues of GpTx-1, a Tarantula Venom Peptide Antagonist of the NaV1.7 Sodium Channel.
J. Med. Chem.,
2015
Mar
12
, 58 (2299-314).
48
Ossola D
et al.
Force-controlled patch clamp of beating cardiac cells.
Nano Lett.,
2015
Mar
11
, 15 (1743-50).
49
Liang W
et al.
Wnt signalling suppresses voltage-dependent Na(+) channel expression in postnatal rat cardiomyocytes.
J. Physiol. (Lond.),
2015
Mar
1
, 593 (1147-57).
50
De Filippo P
et al.
Cavotricuspid isthmus ablation and subcutaneous monitoring device implantation in a 2-year-old baby with 2 SCN5A mutations, sinus node dysfunction, atrial flutter recurrences, and drug induced long-QT syndrome: a tricky case of pediatric overlap syndrome?
J. Cardiovasc. Electrophysiol.,
2015
Mar
, 26 (346-9).
51
Hayashi K
et al.
Functional Characterization of Rare Variants Implicated in Susceptibility to Lone Atrial Fibrillation.
Circ Arrhythm Electrophysiol,
2015
Jun
30
, ().
52
Behr ER
et al.
Role of common and rare variants in SCN10A: results from the Brugada syndrome QRS locus gene discovery collaborative study.
Cardiovasc. Res.,
2015
Jun
1
, 106 (520-9).
53
Mercier A
et al.
Nav1.5 channels can reach the plasma membrane through distinct N-glycosylation states.
Biochim. Biophys. Acta,
2015
Jun
, 1850 (1215-23).
54
Wannous R
et al.
Suppression of PPARβ, and DHA treatment, inhibit NaV1.5 and NHE-1 pro-invasive activities.
Pflugers Arch.,
2015
Jun
, 467 (1249-59).
55
Stroemlund LW
et al.
Gap junctions - guards of excitability.
Biochem. Soc. Trans.,
2015
Jun
, 43 (508-12).
56
Nikulina SY
et al.
An investigation of the association of the H558R polymorphism of the SCN5A gene with idiopathic cardiac conduction disorders.
Genet Test Mol Biomarkers,
2015
Jun
, 19 (288-94).
57
Huang Y
et al.
Molecular basis of the inhibition of the fast inactivation of voltage-gated sodium channel Nav1.5 by tarantula toxin Jingzhaotoxin-II.
Peptides,
2015
Jun
, 68 (175-82).
58
Daimi H
et al.
Absence of family history and phenotype-genotype correlation in pediatric Brugada syndrome: more burden to bear in clinical and genetic diagnosis.
Pediatr Cardiol,
2015
Jun
, 36 (1090-6).
59
Winkel BG
et al.
The role of the sodium current complex in a nonreferred nationwide cohort of sudden infant death syndrome.
Heart Rhythm,
2015
Jun
, 12 (1241-9).
60
Daimi H
et al.
Regulation of SCN5A by microRNAs: miR-219 modulates SCN5A transcript expression and the effects of flecainide intoxication in mice.
Heart Rhythm,
2015
Jun
, 12 (1333-42).
61
Cai T
et al.
Mapping the interaction site for the tarantula toxin hainantoxin-IV (β-TRTX-Hn2a) in the voltage sensor module of domain II of voltage-gated sodium channels.
Peptides,
2015
Jun
, 68 (148-56).
62
Stattin EL
et al.
Genetic screening in sudden cardiac death in the young can save future lives.
Int. J. Legal Med.,
2015
Jul
31
, ().
64
Torregrosa R
et al.
Chimeric derivatives of functionalized amino acids and α-aminoamides: compounds with anticonvulsant activity in seizure models and inhibitory actions on central, peripheral, and cardiac isoforms of voltage-gated sodium channels.
Bioorg. Med. Chem.,
2015
Jul
1
, 23 (3655-66).
65
Chow CY
et al.
Three Peptide Modulators of the Human Voltage-Gated Sodium Channel 1.7, an Important Analgesic Target, from the Venom of an Australian Tarantula.
Toxins (Basel),
2015
Jul
, 7 (2494-513).
66
Hasdemir C
et al.
High prevalence of concealed Brugada syndrome in patients with atrioventricular nodal reentrant tachycardia.
Heart Rhythm,
2015
Jul
, 12 (1584-94).
67
Verstraelen TE
et al.
The role of the SCN5A-encoded channelopathy in irritable bowel syndrome and other gastrointestinal disorders.
Neurogastroenterol. Motil.,
2015
Jul
, 27 (906-13).
68
Zhang J
et al.
Electrophysiological and trafficking defects of the SCN5A T353I mutation in Brugada syndrome are rescued by alpha-allocryptopine.
Eur. J. Pharmacol.,
2015
Jan
5
, 746 (333-43).
69
Chong E
et al.
Resveratrol, a red wine antioxidant, reduces atrial fibrillation susceptibility in the failing heart by PI3K/AKT/eNOS signaling pathway activation.
Heart Rhythm,
2015
Jan
30
, ().
70
Saber S
et al.
Complex genetic background in a large family with Brugada syndrome.
Physiol Rep,
2015
Jan
1
, 3 ().
71
Baruteau AE
et al.
Inherited progressive cardiac conduction disorders.
Curr. Opin. Cardiol.,
2015
Jan
, 30 (33-9).
72
Kirchhof P
et al.
First report on an inotropic peptide activating tetrodotoxin-sensitive, "neuronal" sodium currents in the heart.
Circ Heart Fail,
2015
Jan
, 8 (79-88).
73
Park DS
et al.
Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias.
J. Clin. Invest.,
2015
Jan
, 125 (403-12).
74
Wilde AA
et al.
Bringing home the bacon? The next step in cardiac sodium channelopathies.
J. Clin. Invest.,
2015
Jan
, 125 (99-101).
75
Hothi SS
et al.
p.Y1449C SCN5A mutation associated with overlap disorder comprising conduction disease, Brugada syndrome, and atrial flutter.
J. Cardiovasc. Electrophysiol.,
2015
Jan
, 26 (93-7).
76
Riuró H
et al.
Genetic analysis, in silico prediction, and family segregation in long QT syndrome.
Eur. J. Hum. Genet.,
2015
Jan
, 23 (79-85).
77
Huang CW
et al.
The inhibitory actions by lacosamide, a functionalized amino acid, on voltage-gated Na+ currents.
Neuroscience,
2015
Feb
26
, 287 (125-36).
78
Schwoerer AP
et al.
A Comparative Analysis of Bupivacaine and Ropivacaine Effects on Human Cardiac SCN5A Channels.
Anesth. Analg.,
2015
Feb
16
, ().
79
de Llano CT
et al.
Further evidence of the association between LQT syndrome and epilepsy in a family with KCNQ1 pathogenic variant.
Seizure,
2015
Feb
, 25 (65-7).
80
Moreau A
et al.
Gating pore currents are defects in common with two Nav1.5 mutations in patients with mixed arrhythmias and dilated cardiomyopathy.
J. Gen. Physiol.,
2015
Feb
, 145 (93-106).
81
Beltran-Alvarez P
et al.
Interplay between R513 methylation and S516 phosphorylation of the cardiac voltage-gated sodium channel.
Amino Acids,
2015
Feb
, 47 (429-34).
82
Zhang H
et al.
Reporting sodium channel activity using calcium flux: pharmacological promiscuity of cardiac Nav1.5.
Mol. Pharmacol.,
2015
Feb
, 87 (207-17).
83
Zhu W
et al.
Molecular motions that shape the cardiac action potential: Insights from voltage clamp fluorometry.
Prog. Biophys. Mol. Biol.,
2015
Dec
25
, ().
84
Peters CH
et al.
Triggers for arrhythmogenesis in the Brugada and long QT 3 syndromes.
Prog. Biophys. Mol. Biol.,
2015
Dec
20
, ().
85
Veerman CC
et al.
The cardiac sodium channel gene SCN5A and its gene product NaV1.5: Role in physiology and pathophysiology.
Gene,
2015
Dec
1
, 573 (177-87).
86
Qureshi SF
et al.
Mutational analysis of SCN5A gene in long QT syndrome.
Meta Gene,
2015
Dec
, 6 (26-35).
87
Glynn P
et al.
Voltage-Gated Sodium Channel Phosphorylation at Ser571 Regulates Late Current, Arrhythmia, and Cardiac Function In Vivo.
Circulation,
2015
Aug
18
, 132 (567-77).
88
Varga Z
et al.
Direct Measurement of Cardiac Na+ Channel Conformations Reveals Molecular Pathologies of Inherited Mutations.
Circ Arrhythm Electrophysiol,
2015
Aug
17
, ().
89
Lo YC
et al.
Actions of KMUP-1, a xanthine and piperazine derivative, on voltage-gated Na(+) and Ca(2+) -activated K(+) currents in GH3 pituitary tumor cells.
Br. J. Pharmacol.,
2015
Aug
15
, ().
90
Potet F
et al.
Intracellular calcium attenuates late current conducted by mutant human cardiac sodium channels.
Circ Arrhythm Electrophysiol,
2015
Aug
, 8 (933-41).
91
Pucca MB
et al.
Electrophysiological characterization of the first Tityus serrulatus alpha-like toxin, Ts5: Evidence of a pro-inflammatory toxin on macrophages.
Biochimie,
2015
Aug
, 115 (8-16).
92
Kapplinger JD
et al.
Enhanced Classification of Brugada Syndrome-Associated and Long-QT Syndrome-Associated Genetic Variants in the SCN5A-Encoded Na(v)1.5 Cardiac Sodium Channel.
Circ Cardiovasc Genet,
2015
Aug
, 8 (582-95).
93
Peigneur S
et al.
A gamut of undiscovered electrophysiological effects produced by Tityus serrulatus toxin 1 on NaV-type isoforms.
Neuropharmacology,
2015
Apr
7
, ().
94
Willis BC
et al.
Protein Assemblies of Sodium and Inward Rectifier Potassium Channels Control Cardiac Excitability and Arrhythmogenesis.
Am. J. Physiol. Heart Circ. Physiol.,
2015
Apr
10
, (ajpheart.00176.2015).
95
Algalarrondo V
et al.
Abnormal sodium current properties contribute to cardiac electrical and contractile dysfunction in a mouse model of myotonic dystrophy type 1.
Neuromuscul. Disord.,
2015
Apr
, 25 (308-20).
96
Williams VS
et al.
Multiplex ligation-dependent probe amplification copy number variant analysis in patients with acquired long QT syndrome.
Europace,
2015
Apr
, 17 (635-41).
97
Iqbal SM
et al.
Differential Modulation of Fast Inactivation in Cardiac Sodium Channel Splice Variants by Fyn Tyrosine Kinase.
Cell. Physiol. Biochem.,
2015
, 37 (825-37).
98
Chang YS
et al.
Mutation Analysis of KCNQ1, KCNH2 and SCN5A Genes in Taiwanese Long QT Syndrome Patients.
Int Heart J,
2015
, 56 (450-3).
99
Yamanushi TT
et al.
Comparison of formaldehyde and methanol fixatives used in the detection of ion channel proteins in isolated rat ventricular myocytes by immunofluorescence labelling and confocal microscopy.
Folia Morphol. (Warsz),
2015
, 74 (258-61).
100
Leong IU
et al.
Assessment of the predictive accuracy of five in silico prediction tools, alone or in combination, and two metaservers to classify long QT syndrome gene mutations.
BMC Med. Genet.,
2015
, 16 (34).
101
Nelson M
et al.
The sodium channel-blocking antiepileptic drug phenytoin inhibits breast tumour growth and metastasis.
Mol. Cancer,
2015
, 14 (13).
102
Obejero-Paz CA
et al.
Quantitative Profiling of the Effects of Vanoxerine on Human Cardiac Ion Channels and its Application to Cardiac Risk.
Sci Rep,
2015
, 5 (17623).
103
Hu RM
et al.
Arrhythmogenic Biophysical Phenotype for SCN5A Mutation S1787N Depends upon Splice Variant Background and Intracellular Acidosis.
PLoS ONE,
2015
, 10 (e0124921).
104
Han Z
et al.
Deletion of PDK1 causes cardiac sodium current reduction in mice.
PLoS ONE,
2015
, 10 (e0122436).
105
Saito Y
et al.
Enhancement of Spontaneous Activity by HCN4 Overexpression in Mouse Embryonic Stem Cell-Derived Cardiomyocytes - A Possible Biological Pacemaker.
PLoS ONE,
2015
, 10 (e0138193).
106
Wang L
et al.
De Novo Mutation in the SCN5A Gene Associated with Brugada Syndrome.
Cell. Physiol. Biochem.,
2015
, 36 (2250-62).
107
Allegue C
et al.
Genetic Analysis of Arrhythmogenic Diseases in the Era of NGS: The Complexity of Clinical Decision-Making in Brugada Syndrome.
PLoS ONE,
2015
, 10 (e0133037).
108
Selga E
et al.
Comprehensive Genetic Characterization of a Spanish Brugada Syndrome Cohort.
PLoS ONE,
2015
, 10 (e0132888).
109
Marcsa B
et al.
A Common Polymorphism of the Human Cardiac Sodium Channel Alpha Subunit (SCN5A) Gene Is Associated with Sudden Cardiac Death in Chronic Ischemic Heart Disease.
PLoS ONE,
2015
, 10 (e0132137).
110
Poulet C
et al.
Late Sodium Current in Human Atrial Cardiomyocytes from Patients in Sinus Rhythm and Atrial Fibrillation.
PLoS ONE,
2015
, 10 (e0131432).
111
House CD
et al.
Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling.
Sci Rep,
2015
, 5 (11541).
112
Wang Y
et al.
Comparison of Gating Properties and Use-Dependent Block of Nav1.5 and Nav1.7 Channels by Anti-Arrhythmics Mexiletine and Lidocaine.
PLoS ONE,
2015
, 10 (e0128653).
113
Mirams GR
et al.
Prediction of Thorough QT study results using action potential simulations based on ion channel screens.
J Pharmacol Toxicol Methods,
2014 Nov-Dec
, 70 (246-54).
114
Brugada R
et al.
Brugada syndrome.
Methodist Debakey Cardiovasc J,
2014 Jan-Mar
, 10 (25-8).
115
Sällström J
et al.
Pharmacokinetic-pharmacodynamic modeling of QRS-prolongation by flecainide: Heart rate-dependent effects during sinus rhythm in conscious telemetered dogs.
J Pharmacol Toxicol Methods,
2014 Jan-Feb
, 69 (24-9).
116
Sayeed MZ
et al.
Brugada syndrome with a novel missense mutation in SCN5A gene: a case report from Bangladesh.
Indian Heart J,
2014 Jan-Feb
, 66 (104-7).
117
Sun S
et al.
The discovery of benzenesulfonamide-based potent and selective inhibitors of voltage-gated sodium channel Na(v)1.7.
Bioorg. Med. Chem. Lett.,
2014
Sep
15
, 24 (4397-401).
118
Ho GD
et al.
Discovery of pyrrolo-benzo-1,4-diazines as potent Na(v)1.7 sodium channel blockers.
Bioorg. Med. Chem. Lett.,
2014
Sep
1
, 24 (4110-3).
119
Frenz CT
et al.
NaV1.5 sodium channel window currents contribute to spontaneous firing in olfactory sensory neurons.
J. Neurophysiol.,
2014
Sep
1
, 112 (1091-104).
120
Bartok A
et al.
Margatoxin is a non-selective inhibitor of human Kv1.3 K(+) channels.
Toxicon,
2014
Sep
, 87 (6-16).
121
van Hoeijen DA
et al.
Cardiac sodium channels and inherited electrophysiological disorders: an update on the pharmacotherapy.
Expert Opin Pharmacother,
2014
Sep
, 15 (1875-87).
122
Cai B
et al.
Deletion of FoxO1 leads to shortening of QRS by increasing Na(+) channel activity through enhanced expression of both cardiac NaV1.5 and β3 subunit.
J. Mol. Cell. Cardiol.,
2014
Sep
, 74 (297-306).
123
Pappalardo LW
et al.
Dynamics of sodium channel Nav1.5 expression in astrocytes in mouse models of multiple sclerosis.
Neuroreport,
2014
Oct
22
, 25 (1208-15).
124
Shi D
et al.
Reduction in dynamin-2 is implicated in ischaemic cardiac arrhythmias.
J. Cell. Mol. Med.,
2014
Oct
, 18 (1992-9).
125
Poulin H
et al.
Fluoxetine blocks Nav1.5 channels via a mechanism similar to that of class 1 antiarrhythmics.
Mol. Pharmacol.,
2014
Oct
, 86 (378-89).
126
Boehringer T
et al.
SCN5A mutations and polymorphisms in patients with ventricular fibrillation during acute myocardial infarction.
Mol Med Rep,
2014
Oct
, 10 (2039-44).
127
Wang X
et al.
Angiotensin-(1-7) prevent atrial tachycardia induced sodium channel remodeling.
Pacing Clin Electrophysiol,
2014
Oct
, 37 (1349-56).
128
Liu M
et al.
Cardiac sodium channel mutations: why so many phenotypes?
Nat Rev Cardiol,
2014
Oct
, 11 (607-15).
129
Shy D
et al.
Targeting the sodium channel NaV1.5 to specific membrane compartments of cardiac cells: not a simple task!
Circ. Res.,
2014
Nov
7
, 115 (901-3).
130
Makara MA
et al.
Ankyrin-G coordinates intercalated disc signaling platform to regulate cardiac excitability in vivo.
Circ. Res.,
2014
Nov
7
, 115 (929-38).
131
Zhao Z
et al.
Cilostazol ameliorates atrial ionic remodeling in long-term rapid atrial pacing dogs.
Anatol J Cardiol,
2014
Nov
11
, ().
132
Gillet L
et al.
Elucidating sodium channel NaV1.5 clustering in cardiac myocytes using super-resolution techniques.
Cardiovasc. Res.,
2014
Nov
1
, 104 (231-3).
133
Chatin B
et al.
Dynamitin affects cell-surface expression of voltage-gated sodium channel Nav1.5.
Biochem. J.,
2014
Nov
1
, 463 (339-49).
134
Agullo-Pascual E
et al.
Super-resolution imaging reveals that loss of the C-terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc.
Cardiovasc. Res.,
2014
Nov
1
, 104 (371-81).
135
Baskar S
et al.
Compound heterozygous mutations in the SCN5A-encoded Nav1.5 cardiac sodium channel resulting in atrial standstill and His-Purkinje system disease.
J. Pediatr.,
2014
Nov
, 165 (1050-2).
136
Beltran-Alvarez P
et al.
Identification of N-terminal protein acetylation and arginine methylation of the voltage-gated sodium channel in end-stage heart failure human heart.
J. Mol. Cell. Cardiol.,
2014
Nov
, 76 (126-9).
137
Xu L
et al.
Functional characterization of two novel scorpion sodium channel toxins from Lychas mucronatus.
Toxicon,
2014
Nov
, 90 (318-25).
138
Ilkhanoff L
et al.
A common SCN5A variant is associated with PR interval and atrial fibrillation among African Americans.
J. Cardiovasc. Electrophysiol.,
2014
Nov
, 25 (1150-7).
139
Frolov RV
et al.
Celecoxib and ion channels: a story of unexpected discoveries.
Eur. J. Pharmacol.,
2014
May
5
, 730 (61-71).
140
Baptista-Hon DT
et al.
Potent inhibition by ropivacaine of metastatic colon cancer SW620 cell invasion and NaV1.5 channel function.
Br J Anaesth,
2014
May
22
, ().
141
Klint JK
et al.
Isolation, synthesis and characterization of ω-TRTX-Cc1a, a novel tarantula venom peptide that selectively targets L-type Cav channels.
Biochem. Pharmacol.,
2014
May
15
, 89 (276-86).
142
Wang GK
et al.
Block of human cardiac sodium channels by lacosamide: evidence for slow drug binding along the activation pathway.
Mol. Pharmacol.,
2014
May
, 85 (692-702).
143
Zhao J
et al.
Relationship between two arrhythmias: sinus node dysfunction and atrial fibrillation.
Arch. Med. Res.,
2014
May
, 45 (351-5).
144
Wang Q
et al.
Gain-of-function KCNH2 mutations in patients with Brugada syndrome.
J. Cardiovasc. Electrophysiol.,
2014
May
, 25 (522-30).
145
146
Zidar N
et al.
Substituted 4-phenyl-2-aminoimidazoles and 4-phenyl-4,5-dihydro-2-aminoimidazoles as voltage-gated sodium channel modulators.
Eur J Med Chem,
2014
Mar
3
, 74 (23-30).
147
Andreasen L
et al.
Brugada syndrome risk loci seem protective against atrial fibrillation.
Eur. J. Hum. Genet.,
2014
Mar
26
, ().
148
Cerrone M
et al.
Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype.
Circulation,
2014
Mar
11
, 129 (1092-103).
149
Gandjbakhch E
et al.
Malignant response to ajmaline challenge in SCN5A mutation carriers: experience from a large familial study.
Int. J. Cardiol.,
2014
Mar
1
, 172 (256-8).
150
Chang RK
et al.
Genetic variants for long QT syndrome among infants and children from a statewide newborn hearing screening program cohort.
J. Pediatr.,
2014
Mar
, 164 (590-5.e1-3).
151
Liu C
et al.
Is sudden unexplained nocturnal death syndrome in Southern China a cardiac sodium channel dysfunction disorder?
Forensic Sci. Int.,
2014
Mar
, 236 (38-45).
152
Elíes J
et al.
Inhibition of the cardiac Na⁺ channel Nav1.5 by carbon monoxide.
J. Biol. Chem.,
2014
Jun
6
, 289 (16421-9).
153
Yang T
et al.
Screening for Acute IKr Block is Insufficient to Detect Torsades de Pointes Liability: Role of Late Sodium Current.
Circulation,
2014
Jun
3
, ().
154
Gao G
et al.
Enhanced risk profiling of implanted defibrillator shocks with circulating SCN5A mRNA splicing variants: a pilot trial.
J. Am. Coll. Cardiol.,
2014
Jun
3
, 63 (2261-9).
155
Boczek NJ
et al.
Characterization of SEMA3A-Encoded Semaphorin as a Naturally Occurring Kv4.3 Protein Inhibitor and its Contribution to Brugada Syndrome.
Circ. Res.,
2014
Jun
24
, ().
156
Coleman N
et al.
New Positive KCa Channel Gating Modulators with Selectivity for KCa3.1.
Mol. Pharmacol.,
2014
Jun
23
, ().
157
Ben-Johny M
et al.
Conservation of Ca(2+)/Calmodulin Regulation across Na and Ca(2+) Channels.
Cell,
2014
Jun
19
, 157 (1657-70).
158
Zhang Y
et al.
Measurement and interpretation of electrocardiographic QT intervals in murine hearts.
Am. J. Physiol. Heart Circ. Physiol.,
2014
Jun
1
, 306 (H1553-7).
159
Aiba T
et al.
A mutation causing brugada syndrome identifies a mechanism for altered autonomic and oxidant regulation of cardiac sodium currents.
Circ Cardiovasc Genet,
2014
Jun
, 7 (249-56).
160
Yin G
et al.
Arrhythmogenic calmodulin mutations disrupt intracellular cardiomyocyte Ca2+ regulation by distinct mechanisms.
J Am Heart Assoc,
2014
Jun
, 3 (e000996).
161
Abe K
et al.
Sodium channelopathy underlying familial sick sinus syndrome with early onset and predominantly male characteristics.
Circ Arrhythm Electrophysiol,
2014
Jun
, 7 (511-7).
162
Xing D
et al.
Expression of neonatal Nav1.5 in human brain astrocytoma and its effect on proliferation, invasion and apoptosis of astrocytoma cells.
Oncol. Rep.,
2014
Jun
, 31 (2692-700).
163
Foadi N
et al.
Inhibition of voltage-gated Na⁺ channels by the synthetic cannabinoid ajulemic acid.
Anesth. Analg.,
2014
Jun
, 118 (1238-45).
164
Alday A
et al.
Ionic channels underlying the ventricular action potential in zebrafish embryo.
Pharmacol. Res.,
2014
Jun
, 84 (26-31).
165
Beyder A
et al.
Loss-of-function of the voltage-gated sodium channel NaV1.5 (channelopathies) in patients with irritable bowel syndrome.
Gastroenterology,
2014
Jun
, 146 (1659-68).
166
Ziyadeh-Isleem A
et al.
A truncating SCN5A mutation combined with genetic variability causes sick sinus syndrome and early atrial fibrillation.
Heart Rhythm,
2014
Jun
, 11 (1015-23).
167
Magnani JW
et al.
Sequencing of SCN5A identifies rare and common variants associated with cardiac conduction: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.
Circ Cardiovasc Genet,
2014
Jun
, 7 (365-73).
168
Hu D
et al.
Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome.
J. Am. Coll. Cardiol.,
2014
Jul
8
, 64 (66-79).
169
Shy D
et al.
PDZ domain-binding motif regulates cardiomyocyte compartment-specific NaV1.5 channel expression and function.
Circulation,
2014
Jul
8
, 130 (147-60).
170
Dybkova N
et al.
Tubulin polymerization disrupts cardiac β-adrenergic regulation of late INa.
Cardiovasc. Res.,
2014
Jul
1
, 103 (168-77).
171
Friedrich C
et al.
Gain-of-function mutation in TASK-4 channels and severe cardiac conduction disorder.
EMBO Mol Med,
2014
Jul
, 6 (937-51).
172
Glengarry JM
et al.
Long QT molecular autopsy in sudden infant death syndrome.
Arch. Dis. Child.,
2014
Jul
, 99 (635-40).
173
Savastano S
et al.
A comprehensive electrocardiographic, molecular, and echocardiographic study of Brugada syndrome: validation of the 2013 diagnostic criteria.
Heart Rhythm,
2014
Jul
, 11 (1176-83).
174
Riuró H
et al.
A missense mutation in the sodium channel β1b subunit reveals SCN1B as a susceptibility gene underlying long QT syndrome.
Heart Rhythm,
2014
Jul
, 11 (1202-9).
175
Martins RP
et al.
Dominant Frequency Increase Rate Predicts Transition from Paroxysmal to Long-Term Persistent Atrial Fibrillation.
Circulation,
2014
Jan
24
, ().
176
Lang F
et al.
Regulation of transport across cell membranes by the serum- and glucocorticoid-inducible kinase SGK1.
Mol. Membr. Biol.,
2014
Jan
14
, ().
177
Baroni D
et al.
Antisense-mediated post-transcriptional silencing of SCN1B gene modulates sodium channel functional expression.
Biol. Cell,
2014
Jan
, 106 (13-29).
178
Akylbekova EL
et al.
Gene-environment interaction between SCN5A-1103Y and hypokalemia influences QT interval prolongation in African Americans: the Jackson Heart Study.
Am. Heart J.,
2014
Jan
, 167 (116-122.e1).
179
Matsushita N
et al.
Nicorandil improves electrical remodelling, leading to the prevention of electrically induced ventricular tachyarrhythmia in a mouse model of desmin-related cardiomyopathy.
Clin. Exp. Pharmacol. Physiol.,
2014
Jan
, 41 (89-97).
180
Gajewiak J
et al.
A disulfide tether stabilizes the block of sodium channels by the conotoxin μO§-GVIIJ.
Proc. Natl. Acad. Sci. U.S.A.,
2014
Feb
18
, 111 (2758-63).
181
S P
A second case with arrhythmogenic cardiomyopathy, provocable Brugada ECG and SCN5A mutation.
Int. J. Cardiol.,
2014
Feb
15
, 171 (e117-8).
182
Hu D
et al.
ABCC9 is a novel Brugada and early repolarization syndrome susceptibility gene.
Int. J. Cardiol.,
2014
Feb
15
, 171 (431-42).
183
Hassink RJ
et al.
Fever-induced atrial flutter associated with SCN5A mutation--a first report on successful catheter ablation in a very young child.
Int. J. Cardiol.,
2014
Feb
1
, 171 (e31-4).
184
Dulong C
et al.
The small GTPase RhoA regulates the expression and function of the sodium channel Nav1.5 in breast cancer cells.
Int. J. Oncol.,
2014
Feb
, 44 (539-47).
185
Jones JM
et al.
Modeling human epilepsy by TALEN targeting of mouse sodium channel Scn8a.
Genesis,
2014
Feb
, 52 (141-8).
186
Zhang Y
et al.
The SCN5A mutation A1180V is associated with electrocardiographic features of LQT3.
Pediatr Cardiol,
2014
Feb
, 35 (295-300).
187
Jones A
et al.
Human macrophage SCN5A activates an innate immune signaling pathway for antiviral host defense.
J. Biol. Chem.,
2014
Dec
19
, 289 (35326-40).
188
Wei P
et al.
Jingzhaotoxin-35, a novel gating-modifier toxin targeting both Nav1.5 and Kv2.1 channels.
Toxicon,
2014
Dec
15
, 92 (90-6).
189
Schroder EA
et al.
Light phase-restricted feeding slows basal heart rate to exaggerate the type-3 long QT syndrome phenotype in mice.
Am. J. Physiol. Heart Circ. Physiol.,
2014
Dec
15
, 307 (H1777-85).
190
Tang C
et al.
The tarantula toxin jingzhaotoxin-XI (κ-theraphotoxin-Cj1a) regulates the activation and inactivation of the voltage-gated sodium channel Nav1.5.
Toxicon,
2014
Dec
15
, 92 (6-13).
191
Savio-Galimberti E
et al.
Atrial Fibrillation and SCN5A Variants.
Card Electrophysiol Clin,
2014
Dec
1
, 6 (741-748).
192
Swan H
et al.
Gain-of-function mutation of the SCN5A gene causes exercise-induced polymorphic ventricular arrhythmias.
Circ Cardiovasc Genet,
2014
Dec
, 7 (771-81).
193
Lodder EM
et al.
Integrative genomic approach identifies multiple genes involved in cardiac collagen deposition.
Circ Cardiovasc Genet,
2014
Dec
, 7 (790-8).
194
Huang WF
et al.
Role of sodium channels in the spontaneous excitability of early embryonic cardiomyocytes.
Chin J Physiol,
2014
Aug
31
, 57 (188-97).
195
Milano A
et al.
HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy.
J. Am. Coll. Cardiol.,
2014
Aug
26
, 64 (745-56).
196
Spencer CI
et al.
Calcium transients closely reflect prolonged action potentials in iPSC models of inherited cardiac arrhythmia.
Stem Cell Reports,
2014
Aug
12
, 3 (269-81).
197
Amin AS
SCN5A-related dilated cardiomyopathy: what do we know?
Heart Rhythm,
2014
Aug
, 11 (1454-5).
198
Imai M
et al.
Novel KCNQ1 splicing mutation in patients with forme fruste LQT1 aggravated by hypokalemia.
J Cardiol,
2014
Aug
, 64 (121-6).
199
Zhang H
et al.
Voltage-dependent blockade by bupivacaine of cardiac sodium channels expressed in Xenopus oocytes.
Neurosci Bull,
2014
Aug
, 30 (697-710).
200
Zhang Y
et al.
Arrhythmic substrate, slowed propagation and increased dispersion in conduction direction in the right ventricular outflow tract of murine Scn5a+/- hearts.
Acta Physiol (Oxf),
2014
Aug
, 211 (559-73).
201
Alexandrou AJ
et al.
The human ether-a'-go-go related gene (hERG) K+ channel blockade by the investigative selective-serotonin reuptake inhibitor CONA-437: limited dependence on S6 aromatic residues.
J. Physiol. Pharmacol.,
2014
Aug
, 65 (511-23).
202
Beckermann TM
et al.
Novel SCN5A mutation in amiodarone-responsive multifocal ventricular ectopy-associated cardiomyopathy.
Heart Rhythm,
2014
Aug
, 11 (1446-53).
203
Pambrun T
et al.
Myotonic dystrophy type 1 mimics and exacerbates Brugada phenotype induced by Nav1.5 sodium channel loss-of-function mutation.
Heart Rhythm,
2014
Aug
, 11 (1393-400).
204
Xiong Q
et al.
A rare loss-of-function SCN5A variant is associated with lidocaine-induced ventricular fibrillation.
Pharmacogenomics J.,
2014
Aug
, 14 (372-5).
205
Osorio N
et al.
Specialized functions of Nav1.5 and Nav1.9 channels in electrogenesis of myenteric neurons in intact mouse ganglia.
J. Neurosci.,
2014
Apr
9
, 34 (5233-44).
206
Yuan L
et al.
Investigations of the Navβ1b sodium channel subunit in human ventricle; functional characterization of the H162P Brugada syndrome mutant.
Am. J. Physiol. Heart Circ. Physiol.,
2014
Apr
15
, 306 (H1204-12).
207
Abriel H
et al.
Unexpected α-α interactions with NaV1.5 genetic variants in Brugada syndrome.
Circ Cardiovasc Genet,
2014
Apr
1
, 7 (97-9).
208
van den Boogaard M
et al.
A common genetic variant within SCN10A modulates cardiac SCN5A expression.
J. Clin. Invest.,
2014
Apr
1
, 124 (1844-52).
209
Park DS
et al.
Nav-igating through a complex landscape: SCN10A and cardiac conduction.
J. Clin. Invest.,
2014
Apr
1
, 124 (1460-2).
210
Hoshi M
et al.
Brugada syndrome disease phenotype explained in apparently benign sodium channel mutations.
Circ Cardiovasc Genet,
2014
Apr
1
, 7 (123-31).
211
Wang D
et al.
Cardiac channelopathy testing in 274 ethnically diverse sudden unexplained deaths.
Forensic Sci. Int.,
2014
Apr
, 237 (90-9).
212
Kruse M
et al.
TRPM4 channels in the cardiovascular system.
Curr Opin Pharmacol,
2014
Apr
, 15 (68-73).
213
Zhao Z
et al.
Protective effects of aliskiren on atrial ionic remodeling in a canine model of rapid atrial pacing.
Cardiovasc Drugs Ther,
2014
Apr
, 28 (137-43).
214
Tester DJ
et al.
GENETICS OF LONG QT SYNDROME.
Methodist Debakey Cardiovasc J,
2014
1
, 10 (29-33).
216
Nakaya H
SCN5A mutations associated with overlap phenotype of long QT syndrome type 3 and Brugada syndrome.
Circ. J.,
2014
, 78 (1061-2).
217
Moreau A
et al.
Biophysics, pathophysiology, and pharmacology of ion channel gating pores.
Front Pharmacol,
2014
, 5 (53).
218
Inada S
et al.
Importance of gradients in membrane properties and electrical coupling in sinoatrial node pacing.
PLoS ONE,
2014
, 9 (e94565).
219
Meng E
et al.
Screening for voltage-gated sodium channel interacting peptides.
Sci Rep,
2014
, 4 (4569).
220
Rudokas MW
et al.
The Xenopus oocyte cut-open vaseline gap voltage-clamp technique with fluorometry.
J Vis Exp,
2014
, ().
221
Christiansen M
et al.
Mutations in Danish patients with long QT syndrome and the identification of a large founder family with p.F29L in KCNH2.
BMC Med. Genet.,
2014
, 15 (31).
222
Kanters JK
et al.
Flecainide provocation reveals concealed brugada syndrome in a long QT syndrome family with a novel L1786Q mutation in SCN5A.
Circ. J.,
2014
, 78 (1136-43).
223
Saber S
et al.
[Clinical polymorphisms and approaches of arrhythmias treatment in a family with δKPQ1505-1507 deletion in SCN5A gene].
Vestn. Akad. Med. Nauk SSSR,
2014
, (52-9).
224
Juang JM
et al.
Disease-targeted sequencing of ion channel genes identifies de novo mutations in patients with non-familial Brugada syndrome.
Sci Rep,
2014
, 4 (6733).
225
Shimizu W
Clinical and genetic diagnosis for inherited cardiac arrhythmias.
J Nippon Med Sch,
2014
, 81 (203-10).
226
Zakliaz'minskaia EV
et al.
[Dilated cardiomyopathy caused by p.E446K mutation in SCN5A gene].
Kardiologiia,
2014
, 54 (92-6).
227
Miller D
et al.
Sodium channels, cardiac arrhythmia, and therapeutic strategy.
Adv. Pharmacol.,
2014
, 70 (367-92).
228
Yu CC
et al.
Apamin does not inhibit human cardiac Na+ current, L-type Ca2+ current or other major K+ currents.
PLoS ONE,
2014
, 9 (e96691).
229
Jones DK
et al.
Proton modulation of cardiac I Na: a potential arrhythmogenic trigger.
Handb Exp Pharmacol,
2014
, 221 (169-81).
230
Antzelevitch C
et al.
The role of late I Na in development of cardiac arrhythmias.
Handb Exp Pharmacol,
2014
, 221 (137-68).
231
Vreeker A
et al.
Assembly of the cardiac intercalated disk during pre- and postnatal development of the human heart.
PLoS ONE,
2014
, 9 (e94722).
232
Li X
et al.
Isoprenaline: a potential contributor in sick sinus syndrome--insights from a mathematical model of the rabbit sinoatrial node.
ScientificWorldJournal,
2014
, 2014 (540496).
233
Fontes MS
et al.
Changes in Cx43 and NaV1.5 expression precede the occurrence of substantial fibrosis in calcineurin-induced murine cardiac hypertrophy.
PLoS ONE,
2014
, 9 (e87226).
234
Juang JM
et al.
Utilizing multiple in silico analyses to identify putative causal SCN5A variants in Brugada syndrome.
Sci Rep,
2014
, 4 (3850).
235
Zimmer T
et al.
Voltage-gated sodium channels in the mammalian heart.
Glob Cardiol Sci Pract,
2014
, 2014 (449-63).
236
Takahashi K
et al.
High prevalence of the SCN5A E1784K mutation in school children with long QT syndrome living on the Okinawa islands.
Circ. J.,
2014
, 78 (1974-9).
237
Jimmy JJ
et al.
Clinical characteristics of patients with congenital long QT syndrome and bigenic mutations.
Chin. Med. J.,
2014
, 127 (1482-6).
238
Korogod SM
et al.
Dynamic excitation states and firing patterns are controlled by sodium channel kinetics in myenteric neurons: a simulation study.
Channels (Austin),
2014
, 8 (536-43).
239
Driffort V
et al.
Ranolazine inhibits NaV1.5-mediated breast cancer cell invasiveness and lung colonization.
Mol. Cancer,
2014
, 13 (264).
240
Amarouch MY
et al.
Functional interaction between S1 and S4 segments in voltage-gated sodium channels revealed by human channelopathies.
Channels (Austin),
2014
, 8 (414-20).
241
Uziębło-Życzkowska B
et al.
Genetic diversity of SCN5A gene and its possible association with the concealed form of Brugada syndrome development in Polish group of patients.
Biomed Res Int,
2014
, 2014 (462609).
242
Béziau DM
et al.
Complex Brugada syndrome inheritance in a family harbouring compound SCN5A and CACNA1C mutations.
Basic Res. Cardiol.,
2014
, 109 (446).
243
Jiang S
et al.
H558R polymorphism in SCN5A is associated with Keshan disease and QRS prolongation in Keshan disease patients.
Genet. Mol. Res.,
2014
, 13 (6569-76).
244
Ertugrul I
et al.
Follow up of a family with asymptomatic compound long QT syndrome mutations.
Genet. Couns.,
2014
, 25 (399-403).
245
Gabelli SB
et al.
Regulation of the NaV1.5 cytoplasmic domain by calmodulin.
Nat Commun,
2014
, 5 (5126).
246
Tan ZP
et al.
Whole-exome sequencing identifies Y1495X of SCN5A to be associated with familial conduction disease and sudden death.
Sci Rep,
2014
, 4 (5616).
247
Ricci MT
et al.
SCN1B gene variants in Brugada Syndrome: a study of 145 SCN5A-negative patients.
Sci Rep,
2014
, 4 (6470).
248
Barajas-Martinez H
et al.
[Genetic and molecular basis for sodium channel-mediated Brugada syndrome].
Arch Cardiol Mex,
2013 Oct-Dec
, 83 (295-302).
249
Partemi S
et al.
Analysis of the arrhythmogenic substrate in human heart failure.
Cardiovasc. Pathol.,
2013 Mar-Apr
, 22 (133-40).
250
Hermida JS
et al.
Dual phenotypic transmission in Brugada syndrome.
Arch Cardiovasc Dis,
2013 Jun-Jul
, 106 (366-72).
251
Elkins RC
et al.
Variability in high-throughput ion-channel screening data and consequences for cardiac safety assessment.
J Pharmacol Toxicol Methods,
2013 Jul-Aug
, 68 (112-22).
252
Morissette P
et al.
The anesthetized guinea pig: An effective early cardiovascular derisking and lead optimization model.
J Pharmacol Toxicol Methods,
2013 Jul-Aug
, 68 (137-49).
253
Qu Y
et al.
Human embryonic stem cell derived cardiac myocytes detect hERG-mediated repolarization effects, but not Nav1.5 induced depolarization delay.
J Pharmacol Toxicol Methods,
2013 Jul-Aug
, 68 (74-81).
254
Wang GK
et al.
Persistent human cardiac Na+ currents in stably transfected mammalian cells: Robust expression and distinct open-channel selectivity among Class 1 antiarrhythmics.
Channels (Austin),
2013 Jul-Aug
, 7 (263-74).
255
Lang F
et al.
Serum and glucocorticoid inducible kinase, metabolic syndrome, inflammation, and tumor growth.
Hormones (Athens),
2013 Apr-Jun
, 12 (160-71).
256
Baczkó I
et al.
Characterization of a novel multi-functional resveratrol derivative for the treatment of atrial fibrillation.
Br. J. Pharmacol.,
2013
Sep
18
, ().
257
Kodama T
et al.
Autosomal recessive paediatric sick sinus syndrome associated with novel compound mutations in SCN5A.
Int. J. Cardiol.,
2013
Sep
10
, 167 (3078-80).
258
Washburn DG
et al.
The discovery of potent blockers of the canonical transient receptor channels, TRPC3 and TRPC6, based on an anilino-thiazole pharmacophore.
Bioorg. Med. Chem. Lett.,
2013
Sep
1
, 23 (4979-84).
259
Shryock JC
et al.
The arrhythmogenic consequences of increasing late INa in the cardiomyocyte.
Cardiovasc. Res.,
2013
Sep
1
, 99 (600-11).
260
King JH
et al.
Loss of Nav1.5 expression and function in murine atria containing the RyR2-P2328S gain-of-function mutation.
Cardiovasc. Res.,
2013
Sep
1
, 99 (751-9).
261
Matthews GD
et al.
Action potential wavelength restitution predicts alternans and arrhythmia in murine Scn5a(+/-) hearts.
J. Physiol. (Lond.),
2013
Sep
1
, 591 (4167-88).
262
Remme CA
Cardiac sodium channelopathy associated with SCN5A mutations: electrophysiological, molecular and genetic aspects.
J. Physiol. (Lond.),
2013
Sep
1
, 591 (4099-116).
263
Zhu L
et al.
Two recombinant α-like scorpion toxins from Mesobuthus eupeus with differential affinity toward insect and mammalian Na(+) channels.
Biochimie,
2013
Sep
, 95 (1732-40).
264
Bezzina CR
et al.
Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death.
Nat. Genet.,
2013
Sep
, 45 (1044-9).
265
Zhang Q
et al.
Silencing of desmoplakin decreases connexin43/Nav1.5 expression and sodium current in HL‑1 cardiomyocytes.
Mol Med Rep,
2013
Sep
, 8 (780-6).
266
Li N
et al.
A heterozygous missense SCN5A mutation associated with early repolarization syndrome.
Int. J. Mol. Med.,
2013
Sep
, 32 (661-7).
267
Sottas V
et al.
Characterization of 2 genetic variants of Na(v) 1.5-arginine 689 found in patients with cardiac arrhythmias.
J. Cardiovasc. Electrophysiol.,
2013
Sep
, 24 (1037-46).
268
Sommariva E
et al.
Genetics can contribute to the prognosis of Brugada syndrome: a pilot model for risk stratification.
Eur. J. Hum. Genet.,
2013
Sep
, 21 (911-7).
269
270
Olesen MS
et al.
Very early onset lone atrial fibrillation patients have a high prevalence of rare variants in genes previously associated with atrial fibrillation.
Heart Rhythm,
2013
Oct
18
, ().
271
Black JA
et al.
Noncanonical roles of voltage-gated sodium channels.
Neuron,
2013
Oct
16
, 80 (280-91).
272
Sheets MF
et al.
Outward stabilization of the voltage sensor in domain II but not domain I speeds inactivation of voltage-gated sodium channels.
Am. J. Physiol. Heart Circ. Physiol.,
2013
Oct
15
, 305 (H1213-21).
273
Ma D
et al.
Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells.
Int. J. Cardiol.,
2013
Oct
15
, 168 (5277-86).
274
Hasegawa K
et al.
A Novel KCNQ1 Missense Mutation Identified in a Patient with Juvenile-Onset Atrial Fibrillation Causes Constitutively Open IKs Channels.
Heart Rhythm,
2013
Oct
1
, ().
275
Chan YC
et al.
Electrical Stimulation Promotes Maturation of Cardiomyocytes Derived from Human Embryonic Stem Cells.
J Cardiovasc Transl Res,
2013
Oct
1
, ().
276
Beltran-Alvarez P
et al.
Protein arginine methyl transferases-3 and -5 increase cell surface expression of cardiac sodium channel.
FEBS Lett.,
2013
Oct
1
, 587 (3159-65).
277
Gao G
et al.
Unfolded protein response regulates cardiac sodium current in systolic human heart failure.
Circ Arrhythm Electrophysiol,
2013
Oct
, 6 (1018-24).
278
Cuneo BF
et al.
Arrhythmia phenotype during fetal life suggests long-QT syndrome genotype: risk stratification of perinatal long-QT syndrome.
Circ Arrhythm Electrophysiol,
2013
Oct
, 6 (946-51).
279
Lee YS
et al.
Long QT syndrome: a Korean single center study.
J. Korean Med. Sci.,
2013
Oct
, 28 (1454-60).
280
Eleawa SM
et al.
Effect of testosterone replacement therapy on cardiac performance and oxidative stress in orchidectomized rats.
Acta Physiol (Oxf),
2013
Oct
, 209 (136-47).
281
Hummel YM
et al.
Ventricular dysfunction in a family with long QT syndrome type 3.
Europace,
2013
Oct
, 15 (1516-21).
282
Marsman RF
et al.
Coxsackie and adenovirus receptor (CAR) is a modifier of cardiac conduction and arrhythmia vulnerability in the setting of myocardial ischemia.
J. Am. Coll. Cardiol.,
2013
Nov
18
, ().
283
Brisson L
et al.
NaV1.5 Na⁺ channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia.
J. Cell. Sci.,
2013
Nov
1
, 126 (4835-42).
284
Fedele F
et al.
Role of genetic polymorphisms of ion channels in the pathophysiology of coronary microvascular dysfunction and ischemic heart disease.
Basic Res. Cardiol.,
2013
Nov
, 108 (387).
285
Nadrowitz F
et al.
The distinct effects of lipid emulsions used for "lipid resuscitation" on gating and bupivacaine-induced inhibition of the cardiac sodium channel Nav1.5.
Anesth. Analg.,
2013
Nov
, 117 (1101-8).
286
Westenbroek RE
et al.
Localization of sodium channel subtypes in mouse ventricular myocytes using quantitative immunocytochemistry.
J. Mol. Cell. Cardiol.,
2013
Nov
, 64 (69-78).
287
Risgaard B
et al.
High prevalence of genetic variants previously associated with Brugada syndrome in new exome data.
Clin. Genet.,
2013
Nov
, 84 (489-95).
288
Koenig X
et al.
Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile.
Toxicol. Appl. Pharmacol.,
2013
May
22
, ().
289
Lakatta EG
et al.
Minding the gaps that link intrinsic circadian clock within the heart to its intrinsic ultradian pacemaker clocks. Focus on "The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility".
Am. J. Physiol., Cell Physiol.,
2013
May
15
, 304 (C941-4).
290
Watanabe H
et al.
SCN5A mutation associated with ventricular fibrillation, early repolarization, and concealed myocardial abnormalities.
Int. J. Cardiol.,
2013
May
10
, 165 (e21-3).
291
Bardai A
et al.
Sudden cardiac arrest associated with use of a non-cardiac drug that reduces cardiac excitability: evidence from bench, bedside, and community.
Eur. Heart J.,
2013
May
, 34 (1506-16).
292
An HS
et al.
Sudden cardiac arrest during anesthesia in a 30-month-old boy with syndactyly: a case of genetically proven Timothy syndrome.
J. Korean Med. Sci.,
2013
May
, 28 (788-91).
293
Aziz PF
et al.
Do LQTS gene single nucleotide polymorphisms alter QTc intervals at rest and during exercise stress testing?
Ann Noninvasive Electrocardiol,
2013
May
, 18 (288-93).
294
Kim JJ
et al.
Bradycardia alters Ca(2+) dynamics enhancing dispersion of repolarization and arrhythmia risk.
Am. J. Physiol. Heart Circ. Physiol.,
2013
Mar
15
, 304 (H848-60).
295
Shi RM
et al.
[Site-directed mutagenesis and protein expression of SCN5A gene associated with congenital long QT syndrome].
Zhongguo Dang Dai Er Ke Za Zhi,
2013
Mar
, 15 (223-6).
296
Letsas KP
et al.
Sinus node disease in subjects with type 1 ECG pattern of Brugada syndrome.
J Cardiol,
2013
Mar
, 61 (227-31).
297
Noorman M
et al.
Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy.
Heart Rhythm,
2013
Mar
, 10 (412-9).
298
Morris GM
et al.
Characterisation of a Right Atrial Subsidiary Pacemaker and acceleration of the pacing rate by HCN over-expression.
Cardiovasc. Res.,
2013
Jun
19
, ().
299
Rahgozar K
et al.
Mediation of protection and recovery from experimental autoimmune encephalomyelitis by macrophages expressing the human voltage-gated sodium channel NaV1.5.
J. Neuropathol. Exp. Neurol.,
2013
Jun
, 72 (489-504).
300
Panguluri SK
et al.
Hyperoxia-induced hypertrophy and ion channel remodeling in left ventricle.
Am. J. Physiol. Heart Circ. Physiol.,
2013
Jun
, 304 (H1651-61).
301
Lang F
et al.
Therapeutic potential of serum and glucocorticoid inducible kinase inhibition.
Expert Opin Investig Drugs,
2013
Jun
, 22 (701-14).
302
Revell JD
et al.
Potency optimization of Huwentoxin-IV on hNav1.7: a neurotoxin TTX-S sodium-channel antagonist from the venom of the Chinese bird-eating spider Selenocosmia huwena.
Peptides,
2013
Jun
, 44 (40-6).
303
García-Molina E
et al.
A study of the SCN5A gene in a cohort of 76 patients with Brugada syndrome.
Clin. Genet.,
2013
Jun
, 83 (530-8).
304
Nilsson MF
et al.
Comparative effects of sodium channel blockers in short term rat whole embryo culture.
Toxicol. Appl. Pharmacol.,
2013
Jul
8
, ().
305
Boukens BJ
et al.
Reduced sodium channel function unmasks residual embryonic slow conduction in the adult right ventricular outflow tract.
Circ. Res.,
2013
Jul
5
, 113 (137-41).
306
Korkmaz S
et al.
Provocation of an autoimmune response to cardiac voltage-gated sodium channel NaV1.5 induces cardiac conduction defects in rats.
J. Am. Coll. Cardiol.,
2013
Jul
23
, 62 (340-9).
307
Jones DK
et al.
Extracellular protons inhibit charge immobilization in the cardiac voltage-gated sodium channel.
Biophys. J.,
2013
Jul
2
, 105 (101-7).
308
Ravens U
et al.
Atrial selectivity of antiarrhythmic drugs.
J. Physiol. (Lond.),
2013
Jul
16
, ().
309
McCormack K
et al.
Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels.
Proc. Natl. Acad. Sci. U.S.A.,
2013
Jul
16
, 110 (E2724-32).
310
Takanari H
et al.
Efficient and specific cardiac IK1 inhibition by a new pentamidine analogue.
Cardiovasc. Res.,
2013
Jul
1
, 99 (203-14).
311
Son MK
et al.
Genetic mutation in korean patients of sudden cardiac arrest as a surrogating marker of idiopathic ventricular arrhythmia.
J. Korean Med. Sci.,
2013
Jul
, 28 (1021-6).
312
Gillet L
et al.
NaV1.5 and interacting proteins in human arrhythmogenic cardiomyopathy.
Future Cardiol,
2013
Jul
, 9 (467-70).
313
Li RG
et al.
Mutations of the SCN4B-encoded sodium channel β4 subunit in familial atrial fibrillation.
Int. J. Mol. Med.,
2013
Jul
, 32 (144-50).
314
Doki K
et al.
SCN5A promoter haplotype affects the therapeutic range for serum flecainide concentration in Asian patients.
Pharmacogenet. Genomics,
2013
Jul
, 23 (349-54).
315
Lieve KV
et al.
Results of genetic testing in 855 consecutive unrelated patients referred for long QT syndrome in a clinical laboratory.
Genet Test Mol Biomarkers,
2013
Jul
, 17 (553-61).
316
Zhang Q
et al.
[Desmoplakin expression silencing affects cardiac voltage-gated sodium channel Nav1.5 in HL-1 cells].
Nan Fang Yi Ke Da Xue Xue Bao,
2013
Jul
, 33 (983-9).
317
Schroder EA
et al.
The Cardiomyocyte Molecular Clock, Regulation of Scn5a and Arrhythmia Susceptibility.
Am. J. Physiol., Cell Physiol.,
2013
Jan
30
, ().
318
Ford J
et al.
Human Electrophysiological and Pharmacological Properties of XEN-D0101: A Novel Atrial Selective Kv1.5/IKur Inhibitor.
J. Cardiovasc. Pharmacol.,
2013
Jan
29
, ().
319
Wu AZ
et al.
Antiarrhythmic effects of (-)-epicatechin-3-gallate, a novel sodium channel agonist in cultured neonatal rat ventricular myocytes.
Biochem. Pharmacol.,
2013
Jan
1
, 85 (69-80).
320
Boukens BJ
et al.
Early repolarization in mice causes overestimation of ventricular activation time by the QRS duration.
Cardiovasc. Res.,
2013
Jan
1
, 97 (182-91).
321
Terrenoire C
et al.
Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics.
J. Gen. Physiol.,
2013
Jan
, 141 (61-72).
322
Lang F
et al.
Regulation of ion channels by the serum- and glucocorticoid-inducible kinase SGK1.
FASEB J.,
2013
Jan
, 27 (3-12).
323
Liu L
et al.
A novel mutation in the transmembrane nonpore region of the KCNH2 gene causes severe clinical manifestations of long QT syndrome.
Heart Rhythm,
2013
Jan
, 10 (61-7).
324
Gao G
et al.
RBM25/LUC7L3 function in cardiac sodium channel splicing regulation of human heart failure.
Trends Cardiovasc. Med.,
2013
Jan
, 23 (5-8).
325
Andreasen C
et al.
Mutations in Genes Encoding Cardiac Ion Channels Previously Associated With Sudden Infant Death Syndrome (SIDS) Are Present With High Frequency in New Exome Data.
Can J Cardiol,
2013
Feb
25
, ().
326
Gao G
et al.
SCN5A splicing variants and the possibility of predicting heart failure-associated arrhythmia.
Expert Rev Cardiovasc Ther,
2013
Feb
, 11 (117-9).
327
Calloe K
et al.
Characterization and mechanisms of action of novel NaV1.5 channel mutations associated with Brugada syndrome.
Circ Arrhythm Electrophysiol,
2013
Feb
, 6 (177-84).
328
Núñez L
et al.
p.D1690N Nav1.5 rescues p.G1748D mutation gating defects in a compound heterozygous Brugada syndrome patient.
Heart Rhythm,
2013
Feb
, 10 (264-72).
329
Yu J
et al.
SCN5A mutation in Chinese patients with arrhythmogenic right ventricular dysplasia.
Herz,
2013
Dec
8
, ().
330
van den Boogaard M
et al.
From GWAS to function: Genetic variation in sodium channel gene enhancer influences electrical patterning.
Trends Cardiovasc. Med.,
2013
Dec
17
, ().
331
Hintsa T
et al.
Work stress and the long QT syndrome: high job strain and effort-reward imbalance at work associated with arrhythmic risk in the long QT syndrome.
J. Occup. Environ. Med.,
2013
Dec
, 55 (1387-93).
332
Wahbi K
et al.
Brugada syndrome and abnormal splicing of SCN5A in myotonic dystrophy type 1.
Arch Cardiovasc Dis,
2013
Dec
, 106 (635-43).
333
Yu JH
et al.
[SCN5A mutation in patients with Brugada electrocardiographic pattern induced by fever].
Zhonghua Xin Xue Guan Bing Za Zhi,
2013
Dec
, 41 (1010-4).
334
Kato K
et al.
Cardiac Channelopathies Associated with Infantile Fatal Ventricular Arrhythmias: From the Cradle to the Bench.
J. Cardiovasc. Electrophysiol.,
2013
Aug
26
, ().
335
van Duijvenboden K
et al.
Gene regulatory elements of the cardiac conduction system.
Brief Funct Genomics,
2013
Aug
22
, ().
336
Bradley E
et al.
The cardiac sodium current Na(v)1.5 is functionally expressed in rabbit bronchial smooth muscle cells.
Am. J. Physiol., Cell Physiol.,
2013
Aug
15
, 305 (C427-35).
337
Herren AW
et al.
Post-translational modifications of the cardiac Na channel: contribution of CaMKII-dependent phosphorylation to acquired arrhythmias.
Am. J. Physiol. Heart Circ. Physiol.,
2013
Aug
15
, 305 (H431-45).
339
Huttner IG
et al.
A transgenic zebrafish model of a human cardiac sodium channel mutation exhibits bradycardia, conduction-system abnormalities and early death.
J. Mol. Cell. Cardiol.,
2013
Aug
, 61 (123-32).
340
Parisi P
et al.
Coexistence of epilepsy and Brugada syndrome in a family with SCN5A mutation.
Epilepsy Res.,
2013
Aug
, 105 (415-8).
341
Li X
et al.
[A simulation study for the effect of acid concentration and temperture on sick sinus syndrome].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,
2013
Aug
, 30 (697-703).
342
Bennett JS
et al.
Proliferation of embryonic cardiomyocytes in zebrafish requires the sodium channel scn5Lab.
Genesis,
2013
Aug
, 51 (562-74).
343
Gao Y
et al.
A novel deletion-frameshift mutation in the S1 region of HERG gene in a Chinese family with long QT syndrome.
Chin. Med. J.,
2013
Aug
, 126 (3093-6).
344
Kaufmann SG
et al.
Distribution and function of sodium channel subtypes in human atrial myocardium.
J. Mol. Cell. Cardiol.,
2013
Aug
, 61 (133-41).
345
Maury P
et al.
Novel SCN5A mutations in two families with "Brugada-like" ST elevation in the inferior leads and conduction disturbances.
J Interv Card Electrophysiol,
2013
Aug
, 37 (131-40).
346
Toischer K
et al.
Role of late sodium current as a potential arrhythmogenic mechanism in the progression of pressure-induced heart disease.
J. Mol. Cell. Cardiol.,
2013
Aug
, 61 (111-22).
347
Cheng J
et al.
Caveolin-3 suppresses late sodium current by inhibiting nNOS-dependent S-nitrosylation of SCN5A.
J. Mol. Cell. Cardiol.,
2013
Aug
, 61 (102-10).
348
Rhett JM
et al.
The perinexus: sign-post on the path to a new model of cardiac conduction?
Trends Cardiovasc. Med.,
2013
Aug
, 23 (222-8).
349
Mourão CB
et al.
Characterization of a novel peptide toxin from Acanthoscurria paulensis spider venom: a distinct cysteine assignment to the HWTX-II family.
Biochemistry,
2013
Apr
9
, 52 (2440-52).
350
Crotti L
et al.
Long QT syndrome-associated mutations in intrauterine fetal death.
JAMA,
2013
Apr
10
, 309 (1473-82).
351
Hu RM
et al.
Digenic inheritance novel mutations in SCN5a and SNTA1 increase late I(Na) contributing to LQT syndrome.
Am. J. Physiol. Heart Circ. Physiol.,
2013
Apr
1
, 304 (H994-H1001).
352
Yoshikane Y
et al.
A case of long QT syndrome with triple gene abnormalities: digenic mutations in KCNH2 and SCN5A and gene variant in KCNE1.
Heart Rhythm,
2013
Apr
, 10 (600-3).
353
Shy D
et al.
Cardiac sodium channel NaV1.5 distribution in myocytes via interacting proteins: the multiple pool model.
Biochim. Biophys. Acta,
2013
Apr
, 1833 (886-94).
354
Black JA
et al.
Nav1.5 sodium channels in macrophages in multiple sclerosis lesions.
Mult. Scler.,
2013
Apr
, 19 (532-42).
355
Shinwari ZM
et al.
Identification of a novel KCNQ1 mutation in a large Saudi family with long QT syndrome: clinical consequences and preventive implications.
Clin. Genet.,
2013
Apr
, 83 (370-4).
356
Kurakami K
et al.
Is a novel SCN3B mutation commonly found in SCN5A-negative Brugada syndrome patients?
Circ. J.,
2013
, 77 (900-1).
357
King JH
et al.
Determinants of myocardial conduction velocity: implications for arrhythmogenesis.
Front Physiol,
2013
, 4 (154).
358
Kramer J
et al.
MICE Models: Superior to the HERG Model in Predicting Torsade de Pointes.
Sci Rep,
2013
, 3 (2100).
359
Hegyi B
et al.
Selectivity problems with drugs acting on cardiac Na⁺ and Ca²⁺ channels.
Curr. Med. Chem.,
2013
, 20 (2552-71).
360
Lübkemeier I
et al.
Deletion of the last five C-terminal amino acid residues of connexin43 leads to lethal ventricular arrhythmias in mice without affecting coupling via gap junction channels.
Basic Res. Cardiol.,
2013
, 108 (348).
361
Zakliaz'minskaia EV
et al.
[Clinic and genetic polymorphism of Brugada syndrome in Russian patients, caused by mutation in SCN5A gene].
Khirurgiia (Mosk),
2013
, (49-53).
362
Tarradas A
et al.
A novel missense mutation, I890T, in the pore region of cardiac sodium channel causes Brugada syndrome.
PLoS ONE,
2013
, 8 (e53220).
363
Di Domenico M
et al.
Biomarker discovery by plasma proteomics in familial Brugada Syndrome.
Front. Biosci.,
2013
, 18 (564-71).
364
Jagu B
et al.
Identifying potential functional impact of mutations and polymorphisms: linking heart failure, increased risk of arrhythmias and sudden cardiac death.
Front Physiol,
2013
, 4 (254).
365
Reingardienė D
et al.
Brugada-like electrocardiographic patterns induced by hyperkalemia.
Medicina (Kaunas),
2013
, 49 (148-53).
366
Kaur K
et al.
TGF-β1, released by myofibroblasts, differentially regulates transcription and function of sodium and potassium channels in adult rat ventricular myocytes.
PLoS ONE,
2013
, 8 (e55391).
367
Liu H
et al.
Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel.
PLoS ONE,
2013
, 8 (e54131).
368
Ishikawa T
et al.
Novel SCN3B mutation associated with brugada syndrome affects intracellular trafficking and function of Nav1.5.
Circ. J.,
2013
, 77 (959-67).
369
Atkinson AJ
et al.
Functional, anatomical, and molecular investigation of the cardiac conduction system and arrhythmogenic atrioventricular ring tissue in the rat heart.
J Am Heart Assoc,
2013
, 2 (e000246).
370
Shimizu W
Update of diagnosis and management of inherited cardiac arrhythmias.
Circ. J.,
2013
, 77 (2867-72).
371
Zhang Z
et al.
Kinetic model of Nav1.5 channel provides a subtle insight into slow inactivation associated excitability in cardiac cells.
PLoS ONE,
2013
, 8 (e64286).
372
Shen C
et al.
A1180V of cardiac sodium channel gene (SCN5A): is it a risk factor for dilated cardiomyopathy or just a common variant in Han Chinese?
Dis. Markers,
2013
, 35 (531-5).
373
Zeng Z
et al.
Electrophysiological characteristics of a SCN5A voltage sensors mutation R1629Q associated with Brugada syndrome.
PLoS ONE,
2013
, 8 (e78382).
374
Dun W
et al.
Ankyrin-G participates in INa remodeling in myocytes from the border zones of infarcted canine heart.
PLoS ONE,
2013
, 8 (e78087).
375
Auerbach DS
et al.
Altered cardiac electrophysiology and SUDEP in a model of Dravet syndrome.
PLoS ONE,
2013
, 8 (e77843).
376
Fujii M
et al.
New screening system for selective blockers of voltage-gated K(+) channels using recombinant cell lines dying upon single action potential.
J. Pharmacol. Sci.,
2013
, 123 (147-58).
377
378
Nakajima S
et al.
A novel SCN5A mutation demonstrating a variety of clinical phenotypes in familial sick sinus syndrome.
Intern. Med.,
2013
, 52 (1805-8).
379
Trolle C
et al.
Long QT interval in Turner syndrome--a high prevalence of LQTS gene mutations.
PLoS ONE,
2013
, 8 (e69614).
380
381
Fukuyama M
et al.
L-type calcium channel mutations in Japanese patients with inherited arrhythmias.
Circ. J.,
2013
, 77 (1799-806).
382
Dolz-Gaitón P
et al.
Functional characterization of a novel frameshift mutation in the C-terminus of the Nav1.5 channel underlying a Brugada syndrome with variable expression in a Spanish family.
PLoS ONE,
2013
, 8 (e81493).
383
Uziębło-Życzkowska B
et al.
Congenital long QT syndrome of particularly malignant course connected with so far unknown mutation in the sodium channel SCN5A gene.
Cardiol J,
2013
, 20 (78-82).
384
Fatima A
et al.
The disease-specific phenotype in cardiomyocytes derived from induced pluripotent stem cells of two long QT syndrome type 3 patients.
PLoS ONE,
2013
, 8 (e83005).
385
Jeevaratnam K
et al.
Frequency distribution analysis of activation times and regional fibrosis in murine Scn5a+/- hearts: the effects of ageing and sex.
Mech. Ageing Dev.,
2012 Sep-Oct
, 133 (591-9).
386
Strege P
et al.
Ranolazine inhibits shear sensitivity of endogenous Na+ current and spontaneous action potentials in HL-1 cells.
Channels (Austin),
2012 Nov-Dec
, 6 (457-62).
387
Ildarova R
et al.
Sodium-channel blockers might contribute to the prevention of ventricular tachycardia in patients with long QT syndrome type 2: a description of 4 cases.
J Electrocardiol,
2012 May-Jun
, 45 (237-43).
388
Holst AG
et al.
Sodium current and potassium transient outward current genes in Brugada syndrome: screening and bioinformatics.
Can J Cardiol,
2012 Mar-Apr
, 28 (196-200).
389
Baruteau AE
et al.
Parental electrocardiographic screening identifies a high degree of inheritance for congenital and childhood nonimmune isolated atrioventricular block.
Circulation,
2012
Sep
18
, 126 (1469-77).
390
Chatelier A
et al.
A distinct de novo expression of Nav1.5 sodium channels in human atrial fibroblasts differentiated into myofibroblasts.
J. Physiol. (Lond.),
2012
Sep
1
, 590 (4307-19).
391
Zumhagen S
et al.
Inherited long QT syndrome: clinical manifestation, genetic diagnostics, and therapy.
Herzschrittmacherther Elektrophysiol,
2012
Sep
, 23 (211-9).
392
Balasuriya D
et al.
The sigma-1 receptor binds to the Nav1.5 voltage-gated Na+ channel with 4-fold symmetry.
J. Biol. Chem.,
2012
Oct
26
, 287 (37021-9).
393
Mann SA
et al.
R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy.
J. Am. Coll. Cardiol.,
2012
Oct
16
, 60 (1566-73).
394
Song W
et al.
The human Nav1.5 F1486 deletion associated with long QT syndrome leads to impaired sodium channel inactivation and reduced lidocaine sensitivity.
J. Physiol. (Lond.),
2012
Oct
15
, 590 (5123-39).
395
Rougier JS
et al.
Unexpected dominance: Brugada syndrome SCN5A variants exert negative dominance via α-subunit interaction.
Cardiovasc. Res.,
2012
Oct
1
, 96 (1-3).
396
Clatot J
et al.
Dominant-negative effect of SCN5A N-terminal mutations through the interaction of Na(v)1.5 α-subunits.
Cardiovasc. Res.,
2012
Oct
1
, 96 (53-63).
397
Zei PC
et al.
How insensitive … how a mutation in the SCN5A voltage sensor leads to clinical arrhythmia.
Heart Rhythm,
2012
Oct
, 9 (1689-90).
398
Xi Y
et al.
Loss of function of hNav1.5 by a ZASP1 mutation associated with intraventricular conduction disturbances in left ventricular noncompaction.
Circ Arrhythm Electrophysiol,
2012
Oct
, 5 (1017-26).
399
Winkel BG
et al.
The prevalence of mutations in KCNQ1, KCNH2, and SCN5A in an unselected national cohort of young sudden unexplained death cases.
J. Cardiovasc. Electrophysiol.,
2012
Oct
, 23 (1092-8).
400
Nair K
et al.
Escape capture bigeminy: phenotypic marker of cardiac sodium channel voltage sensor mutation R222Q.
Heart Rhythm,
2012
Oct
, 9 (1681-1688.e1).
401
Carrasco JI
et al.
Flecainide, a therapeutic option in a patient with long QT syndrome type 3 caused by the heterozygous V411M mutation in the SCN5A gene.
Rev Esp Cardiol (Engl Ed),
2012
Nov
, 65 (1058-9).
402
Matsusue A
et al.
An autopsy case of sudden unexpected nocturnal death syndrome with R1193Q polymorphism in the SCN5A gene.
Leg Med (Tokyo),
2012
Nov
, 14 (317-9).
403
Duehmke RM
et al.
Altered re-excitation thresholds and conduction of extrasystolic action potentials contribute to arrhythmogenicity in murine models of long QT syndrome.
Acta Physiol (Oxf),
2012
Nov
, 206 (164-77).
404
Hong K
et al.
Concomitant Brugada-like and short QT electrocardiogram linked to SCN5A mutation.
Eur. J. Hum. Genet.,
2012
Nov
, 20 (1189-92).
405
Abriel H
Cardiac Sodium Channel Nav1.5 Mechanosensitivity is Inhibited by Ranolazine.
,
2012
May
7
, ().
406
Beyder A
et al.
Ranolazine Decreases Mechanosensitivity of the Voltage-Gated Sodium Ion Channel NaV1.5: A Novel Mechanism of Drug Action.
,
2012
May
7
, ().
407
Du YM
et al.
18β-Glycyrrhetinic acid preferentially blocks late Na current generated by ΔKPQ Nav1.5 channels.
,
2012
May
21
, ().
408
Santos LF
et al.
[Diagnostic criteria for the Brugada syndrome: can they be improved?].
Rev Port Cardiol,
2012
May
, 31 (355-62).
409
Hu D
et al.
A novel rare variant in SCN1Bb linked to Brugada syndrome and SIDS by combined modulation of Na(v)1.5 and K(v)4.3 channel currents.
Heart Rhythm,
2012
May
, 9 (760-9).
410
Wacker SJ
et al.
Identification of Selective Inhibitors of the Potassium Channel Kv1.1-1.2((3)) by High-Throughput Virtual Screening and Automated Patch Clamp.
,
2012
Mar
30
, ().
411
Hodgdon KE
et al.
Dorsal root ganglia isolated from Nf1+/- mice exhibit increased levels of mRNA expression of voltage-dependent sodium channels.
Neuroscience,
2012
Mar
29
, 206 (237-44).
412
O'Reilly JP
et al.
Time- and state-dependent effects of methanethiosulfonate ethylammonium (MTSEA) exposure differ between heart and skeletal muscle voltage-gated Na(+) channels.
Biochim. Biophys. Acta,
2012
Mar
, 1818 (443-7).
413
Besana A
et al.
Nadolol block of Nav1.5 does not explain its efficacy in the long QT syndrome.
J. Cardiovasc. Pharmacol.,
2012
Mar
, 59 (249-53).
414
Saucedo AL
et al.
Solution structure of native and recombinant expressed toxin CssII from the venom of the scorpion Centruroides suffusus suffusus, and their effects on Nav1.5 sodium channels.
Biochim. Biophys. Acta,
2012
Mar
, 1824 (478-87).
415
Ashpole NM
et al.
Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates cardiac sodium channel NaV1.5 gating by multiple phosphorylation sites.
J. Biol. Chem.,
2012
Jun
8
, 287 (19856-69).
416
Davis RP
et al.
Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease.
Circulation,
2012
Jun
26
, 125 (3079-91).
417
Hardziyenka M
et al.
Electrophysiologic remodeling of the left ventricle in pressure overload-induced right ventricular failure.
J. Am. Coll. Cardiol.,
2012
Jun
12
, 59 (2193-202).
418
Catalano A
et al.
An improved synthesis of m-hydroxymexiletine, a potent mexiletine metabolite.
Drug Metab Lett,
2012
Jun
1
, 6 (124-8).
419
Gönczi M
et al.
Age-dependent changes in ion channel mRNA expression in canine cardiac tissues.
Gen. Physiol. Biophys.,
2012
Jun
, 31 (153-62).
420
Leffler A
et al.
Local anesthetic-like inhibition of voltage-gated Na(+) channels by the partial μ-opioid receptor agonist buprenorphine.
Anesthesiology,
2012
Jun
, 116 (1335-46).
421
Tester DJ
et al.
Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing.
Mayo Clin. Proc.,
2012
Jun
, 87 (524-39).
422
Ren CT
et al.
Cloning and expression of the two new variants of Nav1.5/SCN5A in rat brain.
Mol. Cell. Biochem.,
2012
Jun
, 365 (139-48).
423
Burashnikov A
et al.
Atrial-selective prolongation of refractory period with AVE0118 is due principally to inhibition of sodium channel activity.
J. Cardiovasc. Pharmacol.,
2012
Jun
, 59 (539-46).
424
Santos LF
et al.
Criteria to predict carriers of a novel SCN5A mutation in a large Portuguese family affected by the Brugada syndrome.
Europace,
2012
Jun
, 14 (882-8).
425
Martin CA
et al.
Reduced Na(+) and higher K(+) channel expression and function contribute to right ventricular origin of arrhythmias in Scn5a+/- mice.
Open Biol,
2012
Jun
, 2 (120072).
426
Guzadhur L
et al.
The age-dependence of atrial arrhythmogenicity in Scn5a+/- murine hearts reflects alterations in action potential propagation and recovery.
Clin. Exp. Pharmacol. Physiol.,
2012
Jun
, 39 (518-27).
427
Matthews GD
et al.
Nonlinearity between action potential alternans and restitution, which both predict ventricular arrhythmic properties in Scn5a+/- and wild-type murine hearts.
J. Appl. Physiol.,
2012
Jun
, 112 (1847-63).
428
Shimada T
et al.
A novel 5' splice site mutation of SCN5A associated with Brugada syndrome resulting in multiple cryptic transcripts.
Int. J. Cardiol.,
2012
Jul
26
, 158 (441-3).
429
Yang T
et al.
Blocking scn10a channels in heart reduces late sodium current and is antiarrhythmic.
Circ. Res.,
2012
Jul
20
, 111 (322-32).
430
van den Boogaard M
et al.
Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer.
J. Clin. Invest.,
2012
Jul
2
, 122 (2519-30).
431
Arnolds DE
et al.
TBX5 drives Scn5a expression to regulate cardiac conduction system function.
J. Clin. Invest.,
2012
Jul
2
, 122 (2509-18).
432
Ritchie MD
et al.
Chromosome 4q25 Variants Are Genetic Modifiers of Rare Ion Channel Mutations Associated With Familial Atrial Fibrillation.
,
2012
Jul
10
, ().
433
Laurent G
et al.
Multifocal Ectopic Purkinje-Related Premature Contractions: A New SCN5A-Related Cardiac Channelopathy.
J. Am. Coll. Cardiol.,
2012
Jul
10
, 60 (144-56).
434
Wei F
et al.
Mesenchymal stem cells neither fully acquire the electrophysiological properties of mature cardiomyocytes nor promote ventricular arrhythmias in infarcted rats.
Basic Res. Cardiol.,
2012
Jul
, 107 (274).
435
Yang M
et al.
Therapeutic potential for phenytoin: targeting Na(v)1.5 sodium channels to reduce migration and invasion in metastatic breast cancer.
Breast Cancer Res. Treat.,
2012
Jul
, 134 (603-15).
436
Lu J
et al.
Improving cardiac conduction with a skeletal muscle sodium channel by gene and cell therapy.
J. Cardiovasc. Pharmacol.,
2012
Jul
, 60 (88-99).
437
Fujii M
et al.
Development of recombinant cell line co-expressing mutated Nav1.5, Kir2.1, and hERG for the safety assay of drug candidates.
J Biomol Screen,
2012
Jul
, 17 (773-84).
438
Park JK
et al.
Genetic variants in SCN5A promoter are associated with arrhythmia phenotype severity in patients with heterozygous loss-of-function mutation.
Heart Rhythm,
2012
Jul
, 9 (1090-6).
439
Crotti L
et al.
Torsades de pointes following acute myocardial infarction: evidence for a deadly link with a common genetic variant.
Heart Rhythm,
2012
Jul
, 9 (1104-12).
440
Kanter RJ
et al.
Brugada-like syndrome in infancy presenting with rapid ventricular tachycardia and intraventricular conduction delay.
Circulation,
2012
Jan
3
, 125 (14-22).
441
Poh YC
et al.
Quantification of gastrointestinal sodium channelopathy.
J. Theor. Biol.,
2012
Jan
21
, 293 (41-8).
442
443
Rook MB
et al.
Biology of cardiac sodium channel Nav1.5 expression.
Cardiovasc. Res.,
2012
Jan
1
, 93 (12-23).
444
Puppala D
et al.
Comparative gene expression profiling in human-induced pluripotent stem cell--derived cardiocytes and human and cynomolgus heart tissue.
Toxicol. Sci.,
2012
Jan
, 131 (292-301).
445
Catalano A
et al.
Synthesis and toxicopharmacological evaluation of m-hydroxymexiletine, the first metabolite of mexiletine more potent than the parent compound on voltage-gated sodium channels.
J. Med. Chem.,
2012
Feb
9
, 55 (1418-22).
446
Kauferstein S
et al.
Cardiac channelopathy causing sudden death as revealed by molecular autopsy.
,
2012
Feb
28
, ().
447
Luo HY
et al.
[Expression of Kir2.1, SCN5a and SCN1b channel genes in mouse cardiomyocytes with various electric properties: patch clamp combined with single cell RT-PCR study].
Sheng Li Xue Bao,
2012
Feb
25
, 64 (82-6).
448
Hallaq H
et al.
Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels.
Am. J. Physiol. Heart Circ. Physiol.,
2012
Feb
, 302 (H782-9).
449
Marionneau C
et al.
Mass spectrometry-based identification of native cardiac Nav1.5 channel α subunit phosphorylation sites.
J. Proteome Res.,
2012
Dec
7
, 11 (5994-6007).
450
Gaunt TR
et al.
Integration of Genetics into a Systems Model of Electrocardiographic Traits Using HumanCVD BeadChip.
Circ Cardiovasc Genet,
2012
Dec
1
, 5 (630-8).
451
Ishikawa T
et al.
A Novel Disease Gene for Brugada Syndrome: Sarcolemmal Membrane-Associated Protein Gene Mutations Impair Intracellular Trafficking of hNav1.5.
Circ Arrhythm Electrophysiol,
2012
Dec
1
, 5 (1098-107).
452
Shiferaw K
et al.
One case, 3 rare simultaneous findings: intramyocardial bronchogenic cyst, P.H558R variant of SCN5A gene, and granular cell tumor of the esophagus.
Am J Forensic Med Pathol,
2012
Dec
, 33 (335-8).
453
Chen L
et al.
Confirmation of a proarrhythmic risk underlying the clinical use of common Chinese herbal intravenous injections.
J Ethnopharmacol,
2012
Aug
1
, 142 (829-35).
454
Lowe JS
et al.
Increased late sodium current contributes to long QT-related arrhythmia susceptibility in female mice.
Cardiovasc. Res.,
2012
Aug
1
, 95 (300-7).
455
Olesen MS
et al.
High prevalence of long QT syndrome-associated SCN5A variants in patients with early-onset lone atrial fibrillation.
Circ Cardiovasc Genet,
2012
Aug
1
, 5 (450-9).
456
Selly JB
et al.
[Cardiac sinus node dysfunction due to a new mutation of the SCN5A gene].
Arch Pediatr,
2012
Aug
, 19 (837-41).
457
Hegyi B
et al.
Tetrodotoxin blocks L-type Ca2+ channels in canine ventricular cardiomyocytes.
Pflugers Arch.,
2012
Aug
, 464 (167-74).
458
Sekiguchi K
et al.
Fibrillation potentials of denervated rat skeletal muscle are associated with expression of cardiac-type voltage-gated sodium channel isoform Nav1.5.
Clin Neurophysiol,
2012
Aug
, 123 (1650-5).
459
Kwon HW
et al.
Long QT syndrome and dilated cardiomyopathy with SCN5A p.R1193Q polymorphism: cardioverter-defibrillator implantation at 27 months.
Pacing Clin Electrophysiol,
2012
Aug
, 35 (e243-6).
460
Chinushi M
et al.
Exercise-related QT interval shortening with a peaked T wave in a healthy boy with a family history of sudden cardiac death.
Pacing Clin Electrophysiol,
2012
Aug
, 35 (e239-42).
461
Song W
et al.
Cardiac sodium channel Nav1.5 mutations and cardiac arrhythmia.
Pediatr Cardiol,
2012
Aug
, 33 (943-9).
462
Zamorano-León JJ
et al.
KCNH2 Gene Mutation: A Potential Link Between Epilepsy and Long QT-2 Syndrome.
,
2012
Apr
19
, ().
463
Wu J
et al.
Altered sinoatrial node function and intra-atrial conduction in murine gain-of-function Scn5a+/ΔKPQ hearts suggest an overlap syndrome.
Am. J. Physiol. Heart Circ. Physiol.,
2012
Apr
1
, 302 (H1510-23).
464
Casado-Arroyo R
et al.
Letter by Casado-Arroyo et al regarding article, "Electrocardiographic characteristics and SCN5A mutations in idiopathic ventricular fibrillation associated with early repolarization".
Circ Arrhythm Electrophysiol,
2012
Apr
, 5 (e59; author reply e60-1).
465
Wang T
et al.
Enhanced impact of SCN5A mutation associated with long QT syndrome in fetal splice isoform.
Heart Rhythm,
2012
Apr
, 9 (598-9).
466
Wang T
et al.
Particulate matter induces cardiac arrhythmias via dysregulation of carotid body sensitivity and cardiac sodium channels.
Am. J. Respir. Cell Mol. Biol.,
2012
Apr
, 46 (524-31).
467
Jansen JA
et al.
Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice.
Heart Rhythm,
2012
Apr
, 9 (600-7).
468
Murphy LL
et al.
Developmentally regulated SCN5A splice variant potentiates dysfunction of a novel mutation associated with severe fetal arrhythmia.
Heart Rhythm,
2012
Apr
, 9 (590-7).
469
Lippi G
et al.
Genetic and clinical aspects of Brugada syndrome: an update.
Adv Clin Chem,
2012
, 56 (197-208).
470
Yang XF
et al.
The antibody targeting the e314 Peptide of human kv1.3 pore region serves as a novel, potent and specific channel blocker.
PLoS ONE,
2012
, 7 (e36379).
471
Mao W
et al.
Reactive oxygen species suppress cardiac NaV1.5 expression through Foxo1.
PLoS ONE,
2012
, 7 (e32738).
472
Veerakul G
et al.
Brugada syndrome: two decades of progress.
Circ. J.,
2012
, 76 (2713-22).
473
van Hoorn F
et al.
SCN5A mutations in Brugada syndrome are associated with increased cardiac dimensions and reduced contractility.
PLoS ONE,
2012
, 7 (e42037).
474
Gosselin-Badaroudine P
et al.
A proton leak current through the cardiac sodium channel is linked to mixed arrhythmia and the dilated cardiomyopathy phenotype.
PLoS ONE,
2012
, 7 (e38331).
475
Lazarczyk MJ
et al.
Selective acquired long QT syndrome (saLQTS) upon risperidone treatment.
BMC Psychiatry,
2012
, 12 (220).
476
Nakajima T
et al.
KCNE3 T4A as the genetic basis of Brugada-pattern electrocardiogram.
Circ. J.,
2012
, 76 (2763-72).
477
O'Reilly AO
et al.
Bisphenol A binds to the local anesthetic receptor site to block the human cardiac sodium channel.
PLoS ONE,
2012
, 7 (e41667).
478
Heath BM
et al.
Translation of flecainide- and mexiletine-induced cardiac sodium channel inhibition and ventricular conduction slowing from nonclinical models to clinical.
J Pharmacol Toxicol Methods,
2011 May-Jun
, 63 (258-68).
479
Patoine D
et al.
A novel KCNQ1 variant (L203P) associated with torsades de pointes-related syncope in a Steinert syndrome patient.
Can J Cardiol,
2011 Mar-Apr
, 27 (263.e5-12).
480
Olesen MS
et al.
A novel nonsense variant in Nav1.5 cofactor MOG1 eliminates its sodium current increasing effect and may increase the risk of arrhythmias.
Can J Cardiol,
2011 Jul-Aug
, 27 (523.e17-23).
481
Tanaka M
et al.
Elevated oxidative stress is associated with ventricular fibrillation episodes in patients with Brugada-type electrocardiogram without SCN5A mutation.
Cardiovasc. Pathol.,
2011 Jan-Feb
, 20 (e37-42).
482
Gao G
et al.
Role of RBM25/LUC7L3 in abnormal cardiac sodium channel splicing regulation in human heart failure.
Circulation,
2011
Sep
6
, 124 (1124-31).
484
Kaczorowski GJ
A molecular formula for heart failure and sudden cardiac death. Focus on "Nav1.5-dependent persistent Na+ influx activates CaMKII in rat ventricular myocytes and N1325S mice".
Am. J. Physiol., Cell Physiol.,
2011
Sep
, 301 (C557-8).
485
Rong M
et al.
Molecular basis of the tarantula toxin jingzhaotoxin-III (β-TRTX-Cj1α) interacting with voltage sensors in sodium channel subtype Nav1.5.
FASEB J.,
2011
Sep
, 25 (3177-85).
486
Yao L
et al.
Nav1.5-dependent persistent Na+ influx activates CaMKII in rat ventricular myocytes and N1325S mice.
Am. J. Physiol., Cell Physiol.,
2011
Sep
, 301 (C577-86).
487
Eastaugh LJ
et al.
Brugada syndrome caused by a large deletion in SCN5A only detected by multiplex ligation-dependent probe amplification.
J. Cardiovasc. Electrophysiol.,
2011
Sep
, 22 (1073-6).
488
Cheng J
et al.
LQTS-associated mutation A257G in α1-syntrophin interacts with the intragenic variant P74L to modify its biophysical phenotype.
Cardiogenetics,
2011
Oct
25
, 1 ().
489
Zhou Y
et al.
Ionic mechanisms underlying cardiac toxicity of the organochloride solvent trichloromethane.
,
2011
Oct
17
, ().
490
Lemoine MD
et al.
Arrhythmogenic left atrial cellular electrophysiology in a murine genetic long QT syndrome model.
Cardiovasc. Res.,
2011
Oct
1
, 92 (67-74).
491
Calloe K
et al.
Multiple arrhythmic syndromes in a newborn, owing to a novel mutation in SCN5A.
Can. J. Physiol. Pharmacol.,
2011
Oct
, 89 (723-36).
492
Tester DJ
et al.
Unexplained drownings and the cardiac channelopathies: a molecular autopsy series.
Mayo Clin. Proc.,
2011
Oct
, 86 (941-7).
493
Zygmunt AC
et al.
Mechanisms of atrial-selective block of Na⁺ channels by ranolazine: I. Experimental analysis of the use-dependent block.
Am. J. Physiol. Heart Circ. Physiol.,
2011
Oct
, 301 (H1606-14).
494
Martin CA
et al.
Refractory dispersion promotes conduction disturbance and arrhythmias in a Scn5a (+/-) mouse model.
Pflugers Arch.,
2011
Oct
, 462 (495-504).
495
Shinlapawittayatorn K
et al.
A novel strategy using cardiac sodium channel polymorphic fragments to rescue trafficking-deficient SCN5A mutations.
Circ Cardiovasc Genet,
2011
Oct
, 4 (500-9).
496
Kilinc OU
et al.
Successful Elimination of Significant Arrhythmia Burden with Flecainide in an Adolescent with Long QT Syndrome Type 3.
,
2011
Nov
30
, ().
497
Jones DK
et al.
Extracellular proton modulation of the cardiac voltage-gated sodium channel, Nav1.5.
Biophys. J.,
2011
Nov
2
, 101 (2147-56).
498
Chockalingam P
et al.
Loss-of-Function Sodium Channel Mutations in Infancy: A Pattern Unfolds.
,
2011
Nov
16
, ().
499
Parvez B
et al.
The "missing" link in atrial fibrillation heritability.
J Electrocardiol,
2011
Nov
, 44 (641-4).
500
Byers MR
et al.
Odontoblasts in developing, mature and ageing rat teeth have multiple phenotypes that variably express all nine voltage-gated sodium channels.
Arch. Oral Biol.,
2011
Nov
, 56 (1199-220).
501
McNair WP
et al.
SCN5A Mutations Associate With Arrhythmic Dilated Cardiomyopathy and Commonly Localize to the Voltage-Sensing Mechanism.
J. Am. Coll. Cardiol.,
2011
May
24
, 57 (2160-8).
502
Cheng J
et al.
The common African American polymorphism SCN5A-S1103Y interacts with mutation SCN5A-R680H to increase late Na current.
Physiol. Genomics,
2011
May
13
, 43 (461-6).
503
Auerbach DS
et al.
Structural heterogeneity promotes triggered activity, reflection and arrhythmogenesis in cardiomyocyte monolayers.
J. Physiol. (Lond.),
2011
May
1
, 589 (2363-81).
504
Martin CA
et al.
Mapping of reentrant spontaneous polymorphic ventricular tachycardia in a Scn5a+/- mouse model.
Am. J. Physiol. Heart Circ. Physiol.,
2011
May
, 300 (H1853-62).
505
Horne AJ
et al.
A novel mechanism for LQT3 with 2:1 block: a pore-lining mutation in Nav1.5 significantly affects voltage-dependence of activation.
Heart Rhythm,
2011
May
, 8 (770-7).
506
Postema PG
et al.
Sodium channelopathies: do we really understand what's going on?
J. Cardiovasc. Electrophysiol.,
2011
May
, 22 (590-3).
507
Zhang T
et al.
LQTS mutation N1325S in cardiac sodium channel gene SCN5A causes cardiomyocyte apoptosis, cardiac fibrosis and contractile dysfunction in mice.
Int. J. Cardiol.,
2011
Mar
3
, 147 (239-45).
508
Novotny T
et al.
Mutation Analysis Ion Channel Genes Ventricular Fibrillation Survivors with Coronary Artery Disease.
,
2011
Mar
16
, ().
509
Strege PR
et al.
Hydrogen sulfide is a partially redox-independent activator of the human jejunum Na+ channel, NaV1.5.
,
2011
Mar
10
, ().
510
Olesen MS
et al.
Mutations in sodium channel β-subunit SCN3B are associated with early-onset lone atrial fibrillation.
Cardiovasc. Res.,
2011
Mar
1
, 89 (786-93).
511
Lopez KN
et al.
Homozygous mutation in SCN5A associated with atrial quiescence, recalcitrant arrhythmias, and poor capture thresholds.
Heart Rhythm,
2011
Mar
, 8 (471-3).
512
Shinlapawittayatorn K
et al.
A common SCN5A polymorphism modulates the biophysical defects of SCN5A mutations.
Heart Rhythm,
2011
Mar
, 8 (455-62).
513
Skinner JR
et al.
Prospective, population-based long QT molecular autopsy study of postmortem negative sudden death in 1 to 40 year olds.
Heart Rhythm,
2011
Mar
, 8 (412-9).
514
Zhang JT
et al.
[Readthrough of nonsense mutation W822X in the SCN5A gene can effectively restore expression of cardiac Na+ channels W822X].
Zhonghua Xin Xue Guan Bing Za Zhi,
2011
Mar
, 39 (238-41).
515
Atack TC
et al.
Informatic and functional approaches to identifying a regulatory region for the cardiac sodium channel.
Circ. Res.,
2011
Jun
24
, 109 (38-46).
516
Gurung IS
et al.
Deletion of the metabolic transcriptional coactivator PGC1{beta} induces cardiac arrhythmia.
,
2011
Jun
1
, ().
517
Kattygnarath D
et al.
MOG1: a new susceptibility gene for Brugada syndrome.
Circ Cardiovasc Genet,
2011
Jun
, 4 (261-8).
518
Chi Y
et al.
[Synthesis, refolding and identification of pharmacological activities of neurotoxin JZTX-XI and R3A-JZTX-XI].
Sheng Wu Gong Cheng Xue Bao,
2011
Jun
, 27 (900-8).
519
Beltran-Alvarez P
et al.
The cardiac sodium channel is post-translationally modified by arginine methylation.
,
2011
Jul
4
, ().
520
Bignolais O
et al.
Early ion-channel remodeling and arrhythmias precede hypertrophy in a mouse model of complete atrioventricular block.
,
2011
Jul
22
, ().
521
Amin AS
et al.
Facilitatory and inhibitory effects of SCN5A mutations on atrial fibrillation in Brugada syndrome.
Europace,
2011
Jul
, 13 (968-75).
522
Tveito A
et al.
Defining candidate drug characteristics for Long-QT (LQT3) syndrome.
Math Biosci Eng,
2011
Jul
, 8 (861-73).
523
Barc J
et al.
Screening for copy number variation in genes associated with the long QT syndrome: clinical relevance.
J. Am. Coll. Cardiol.,
2011
Jan
4
, 57 (40-7).
524
Abd Allah E
et al.
Changes in the expression of ion channels, connexins and Ca2+ handling proteins in the sinoatrial node during postnatal development.
,
2011
Jan
28
, ().
525
Bax NA
et al.
Epithelial-to-mesenchymal transformation alters electrical conductivity of human epicardial cells.
,
2011
Jan
20
, ().
526
Firth AL
et al.
Functional ion channels in human pulmonary artery smooth muscle cells: Voltage-dependent cation channels.
Pulm Circ,
2011
Jan
1
, 1 (48-71).
527
Chockalingam P
et al.
Fever-induced life-threatening arrhythmias in children harboring an SCN5A mutation.
Pediatrics,
2011
Jan
, 127 (e239-44).
528
Huang H
et al.
Y1767C, a novel SCN5A mutation, induces a persistent Na+ current and potentiates ranolazine inhibition of Nav1.5 channels.
Am. J. Physiol. Heart Circ. Physiol.,
2011
Jan
, 300 (H288-99).
529
Widmark J
et al.
Differential evolution of voltage-gated sodium channels in tetrapods and teleost fishes.
Mol. Biol. Evol.,
2011
Jan
, 28 (859-71).
530
Jeevaratnam K
et al.
Delayed conduction and its implications in murine Scn5a(+/-) hearts: independent and interacting effects of genotype, age, and sex.
Pflugers Arch.,
2011
Jan
, 461 (29-44).
531
Hofshi A
et al.
A combined gene and cell therapy approach for restoration of conduction.
Heart Rhythm,
2011
Jan
, 8 (121-30).
532
Bartos DC
et al.
R231C mutation in KCNQ1 causes long QT syndrome type 1 and familial atrial fibrillation.
Heart Rhythm,
2011
Jan
, 8 (48-55).
533
Moraes ER
et al.
Differential effects of Tityus bahiensis scorpion venom on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium currents.
Neurotox Res,
2011
Jan
, 19 (102-14).
534
Ernesto C
et al.
[Investigation of ion channel gene variants in patients with long QT syndrome.]
,
2011
Feb
4
, ().
535
Petitprez S
et al.
SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Nav1.5 in cardiomyocytes.
Circ. Res.,
2011
Feb
4
, 108 (294-304).
536
Albesa M
et al.
Regulation of the cardiac sodium channel Nav1.5 by utrophin in dystrophin-deficient mice.
Cardiovasc. Res.,
2011
Feb
1
, 89 (320-8).
537
Sun LP
et al.
[Update on cardiac SCN5A gene mutation and dilated cardiomyopathy].
Zhonghua Xin Xue Guan Bing Za Zhi,
2011
Feb
, 39 (182-4).
538
Martin CA
et al.
Spatial and temporal heterogeneities are localized to the right ventricular outflow tract in a heterozygotic Scn5a mouse model.
Am. J. Physiol. Heart Circ. Physiol.,
2011
Feb
, 300 (H605-16).
539
Yuan C
et al.
JZTX-XIII, a Kv channel gating modifier toxin from Chinese tarantula Chilobrachys jingzhao.
,
2011
Dec
8
, ().
540
Davies MR
et al.
An In silico Canine Cardiac Midmyocardial Action Potential Duration Model as a Tool for Early Drug Safety Assessment.
,
2011
Dec
23
, ().
541
Watanabe H
et al.
Electrocardiographic characteristics and SCN5A mutations in idiopathic ventricular fibrillation associated with early repolarization.
Circ Arrhythm Electrophysiol,
2011
Dec
, 4 (874-81).
542
Carrithers LM
et al.
The human macrophage sodium channel NaV1.5 regulates mycobacteria processing through organelle polarization and localized calcium oscillations.
FEMS Immunol. Med. Microbiol.,
2011
Dec
, 63 (319-27).
543
Cheng J
et al.
Sudden unexplained nocturnal death syndrome in Southern China: an epidemiological survey and SCN5A gene screening.
Am J Forensic Med Pathol,
2011
Dec
, 32 (359-63).
544
Baroni D
et al.
Molecular differential expression of voltage-gated sodium channel α and β subunit mRNAs in five different mammalian cell lines.
J. Bioenerg. Biomembr.,
2011
Dec
, 43 (729-38).
545
Sung RK
et al.
QTc prolongation and family history of sudden death in a patient with desmin cardiomyopathy.
Pacing Clin Electrophysiol,
2011
Dec
, 34 (e105-8).
546
Doetzer AD
et al.
What can be done when asymptomatic patients discover they have Brugada syndrome? A case report of Brugada syndrome.
Int. J. Cardiol.,
2011
Aug
4
, 150 (e96-7).
547
Watanabe H
et al.
Striking In vivo phenotype of a disease-associated human SCN5A mutation producing minimal changes in vitro.
Circulation,
2011
Aug
30
, 124 (1001-11).
548
Möbius-Winkler S
et al.
New familial heterozygous c 4066_4068 delTT 2 bp deletion of the SCN5A gene causing Brugada syndrome.
Heart Rhythm,
2011
Aug
, 8 (1224-7).
549
Ohno S
et al.
KCNE5 (KCNE1L) Variants Are Novel Modulator of Brugada Syndrome and Idiopathic Ventricular Fibrillation.
,
2011
Apr
14
, ().
550
551
Sun AY
et al.
The S1103Y Cardiac Sodium Channel Variant Is Associated With Implantable Cardioverter-Defibrillator Events in Blacks With Heart Failure and Reduced Ejection Fraction.
Circ Cardiovasc Genet,
2011
Apr
1
, 4 (163-8).
552
Wilde AA
et al.
Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac sodium channel.
Circ. Res.,
2011
Apr
1
, 108 (884-97).
553
Jeff JM
et al.
SCN5A variation is associated with electrocardiographic traits in the Jackson Heart Study.
Circ Cardiovasc Genet,
2011
Apr
, 4 (139-44).
554
Hekkala AM
et al.
Epinephrine bolus test in detecting long QT syndrome mutation carriers with indeterminable electrocardiographic phenotype.
Ann Noninvasive Electrocardiol,
2011
Apr
, 16 (172-9).
555
Zhou R
et al.
Whole genome network analysis of ion channels and connexins in myocardial infarction.
Cell. Physiol. Biochem.,
2011
, 27 (299-304).
556
Nakajima T
et al.
Identification of six novel SCN5A mutations in Japanese patients with Brugada syndrome.
Int Heart J,
2011
, 52 (27-31).
557
Winkel BG
et al.
Whole-genome amplified DNA from stored dried blood spots is reliable in high resolution melting curve and sequencing analysis.
BMC Med. Genet.,
2011
, 12 (22).
558
Smith JG
et al.
Genome-wide association studies of the PR interval in African Americans.
PLoS Genet.,
2011
, 7 (e1001304).
559
Walzik S
et al.
Alternative splicing of the cardiac sodium channel creates multiple variants of mutant T1620K channels.
PLoS ONE,
2011
, 6 (e19188).
560
Frolov RV
et al.
Inhibition of HERG potassium channels by celecoxib and its mechanism.
PLoS ONE,
2011
, 6 (e26344).
561
Stein M
et al.
A 50% reduction of excitability but not of intercellular coupling affects conduction velocity restitution and activation delay in the mouse heart.
PLoS ONE,
2011
, 6 (e20310).
562
Chen L
et al.
Polymorphism H558R in the human cardiac sodium channel SCN5A gene is associated with atrial fibrillation.
J. Int. Med. Res.,
2011
, 39 (1908-16).
563
Himmel HM
et al.
QTc shortening with a new investigational cancer drug: a brief case study.
J Pharmacol Toxicol Methods,
2010 Jul-Aug
, 62 (72-81).
564
House CD
et al.
Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion.
Cancer Res.,
2010
Sep
1
, 70 (6957-67).
565
Pignier C
et al.
Selective inhibition of persistent sodium current by F 15845 prevents ischaemia-induced arrhythmias.
Br. J. Pharmacol.,
2010
Sep
, 161 (79-91).
566
Jeevaratnam K
et al.
Differences in sino-atrial and atrio-ventricular function with age and sex attributable to the Scn5a+/- mutation in a murine cardiac model.
Acta Physiol (Oxf),
2010
Sep
, 200 (23-33).
567
Bokil NJ
et al.
Molecular genetics of long QT syndrome.
Mol. Genet. Metab.,
2010
Sep
, 101 (1-8).
568
Tester DJ
et al.
Prevalence and spectrum of large deletions or duplications in the major long QT syndrome-susceptibility genes and implications for long QT syndrome genetic testing.
Am. J. Cardiol.,
2010
Oct
15
, 106 (1124-8).
569
Kuryshev YA
et al.
Increased cardiac risk in concomitant methadone and diazepam treatment: pharmacodynamic interactions in cardiac ion channels.
J. Cardiovasc. Pharmacol.,
2010
Oct
, 56 (420-30).
570
van Stuijvenberg L
et al.
Alternative promoter usage and splicing of the human SCN5A gene contribute to transcript heterogeneity.
DNA Cell Biol.,
2010
Oct
, 29 (577-87).
571
Matthews GD
et al.
Regional variations in action potential alternans in isolated murine Scn5a(+/-) hearts during dynamic pacing.
Acta Physiol (Oxf),
2010
Oct
, 200 (129-46).
572
Dautova Y
et al.
Atrial arrhythmogenic properties in wild-type and Scn5a+/- murine hearts.
Exp. Physiol.,
2010
Oct
, 95 (994-1007).
573
Murakami M
et al.
Efficacy of low-dose bepridil for prevention of ventricular fibrillation in patients with Brugada syndrome with and without SCN5A mutation.
J. Cardiovasc. Pharmacol.,
2010
Oct
, 56 (389-95).
574
Yamamura K
et al.
A novel SCN5A mutation associated with the linker between III and IV domains of Nav1.5 in a neonate with fatal long QT syndrome.
Int. J. Cardiol.,
2010
Nov
5
, 145 (61-4).
575
Kotta CM
et al.
Novel sodium channel SCN5A mutations in Brugada syndrome patients from Greece.
Int. J. Cardiol.,
2010
Nov
5
, 145 (45-8).
576
Nishii N
et al.
SCN5A mutation is associated with early and frequent recurrence of ventricular fibrillation in patients with Brugada syndrome.
Circ. J.,
2010
Nov
25
, 74 (2572-8).
577
Oka Y
et al.
Atrioventricular block-induced Torsades de Pointes with clinical and molecular backgrounds similar to congenital long QT syndrome.
Circ. J.,
2010
Nov
25
, 74 (2562-71).
578
Johannessen M
et al.
Antagonist Action of Progesterone at Sigma Receptors in the Modulation of Voltage-Gated Sodium Channels.
,
2010
Nov
17
, ().
579
Gavrielatos G
et al.
Sensitivity and specificity of sodium channel blocking test in the diagnosis of Brugada syndrome.
Int. J. Cardiol.,
2010
May
28
, 141 (e31-3).
580
Sossalla S
et al.
Altered Na(+) currents in atrial fibrillation effects of ranolazine on arrhythmias and contractility in human atrial myocardium.
J. Am. Coll. Cardiol.,
2010
May
25
, 55 (2330-42).
581
Kang J
et al.
In Vitro Electrocardiographic and Cardiac Ion Channel Effects of (-)-Epigallocatechin-3-Gallate, the Main Catechin of Green Tea.
,
2010
May
18
, ().
582
Gao R
et al.
Expression of voltage-gated sodium channel alpha subunit in human ovarian cancer.
Oncol. Rep.,
2010
May
, 23 (1293-9).
583
Allegue C
et al.
A new approach to long QT syndrome mutation detection by Sequenom MassARRAY system.
Electrophoresis,
2010
May
, 31 (1648-55).
584
Gui J
et al.
Mutation-specific effects of polymorphism H558R in SCN5A-related sick sinus syndrome.
J. Cardiovasc. Electrophysiol.,
2010
May
, 21 (564-73).
585
Campuzano O
et al.
Genetics of Brugada syndrome.
Curr. Opin. Cardiol.,
2010
May
, 25 (210-5).
587
Casini S
et al.
Tubulin polymerization modifies cardiac sodium channel expression and gating.
Cardiovasc. Res.,
2010
Mar
1
, 85 (691-700).
588
Tu E
et al.
Post-mortem pathologic and genetic studies in "dead in bed syndrome" cases in type 1 diabetes mellitus.
Hum. Pathol.,
2010
Mar
, 41 (392-400).
589
Black JA
et al.
Astrocytes within multiple sclerosis lesions upregulate sodium channel Nav1.5.
Brain,
2010
Mar
, 133 (835-46).
590
Amin AS
et al.
Fever-triggered ventricular arrhythmias in Brugada syndrome and type 2 long-QT syndrome.
Neth Heart J,
2010
Mar
, 18 (165-9).
591
Hu D
et al.
Dual variation in SCN5A and CACNB2b underlies the development of cardiac conduction disease without Brugada syndrome.
Pacing Clin Electrophysiol,
2010
Mar
, 33 (274-85).
592
Lang F
et al.
Significance of SGK1 in the regulation of neuronal function.
,
2010
Jun
7
, ().
593
Gaborit N
et al.
Gender-related differences in ion-channel and transporter subunit expression in non-diseased human hearts.
,
2010
Jun
21
, ().
594
Valdivia CR
et al.
Loss-of-function mutation of the SCN3B-encoded sodium channel {beta}3 subunit associated with a case of idiopathic ventricular fibrillation.
Cardiovasc. Res.,
2010
Jun
1
, 86 (392-400).
595
Tan BH
et al.
Sudden infant death syndrome-associated mutations in the sodium channel beta subunits.
Heart Rhythm,
2010
Jun
, 7 (771-8).
596
Butters TD
et al.
Mechanistic links between Na+ channel (SCN5A) mutations and impaired cardiac pacemaking in sick sinus syndrome.
Circ. Res.,
2010
Jul
9
, 107 (126-37).
597
Wang P
et al.
Functional dominant-negative mutation of sodium channel subunit gene SCN3B associated with atrial fibrillation in a Chinese GeneID population.
Biochem. Biophys. Res. Commun.,
2010
Jul
16
, 398 (98-104).
598
Remme CA
et al.
Sodium Channel (Dys)Function and Cardiac Arrhythmias.
,
2010
Jul
14
, ().
599
Fabritz L
et al.
Autonomic modulation and antiarrhythmic therapy in a model of long QT syndrome type 3.
Cardiovasc. Res.,
2010
Jul
1
, 87 (60-72).
600
Schroeter A
et al.
Structure and function of splice variants of the cardiac voltage-gated sodium channel Na(v)1.5.
J. Mol. Cell. Cardiol.,
2010
Jul
, 49 (16-24).
601
Desaphy JF
et al.
Molecular determinants of state-dependent block of voltage-gated sodium channels by pilsicainide.
Br. J. Pharmacol.,
2010
Jul
, 160 (1521-33).
602
García-Castro M
et al.
The spectrum of SCN5A gene mutations in Spanish Brugada syndrome patients.
Rev Esp Cardiol,
2010
Jul
, 63 (856-9).
603
Tester DJ
et al.
Epidemiologic, molecular, and functional evidence suggest A572D-SCN5A should not be considered an independent LQT3-susceptibility mutation.
Heart Rhythm,
2010
Jul
, 7 (912-9).
604
Liu JF
et al.
Mutation-specific risk in two genetic forms of type 3 long QT syndrome.
Am. J. Cardiol.,
2010
Jan
15
, 105 (210-3).
605
Skinner JR
et al.
The SCN5A gene in Brugada syndrome: mutations, variants, missense and nonsense. What's a clinician to do?
Heart Rhythm,
2010
Jan
, 7 (50-1).
606
Adabag AS
et al.
Etiology of sudden death in the community: results of anatomical, metabolic, and genetic evaluation.
Am. Heart J.,
2010
Jan
, 159 (33-9).
607
Hakim P
et al.
Scn3b knockout mice exhibit abnormal sino-atrial and cardiac conduction properties.
Acta Physiol (Oxf),
2010
Jan
, 198 (47-59).
608
Jarecki BW
et al.
Human voltage-gated sodium channel mutations that cause inherited neuronal and muscle channelopathies increase resurgent sodium currents.
J. Clin. Invest.,
2010
Jan
, 120 (369-78).
609
Abriel H
Cardiac sodium channel Na(v)1.5 and interacting proteins: Physiology and pathophysiology.
J. Mol. Cell. Cardiol.,
2010
Jan
, 48 (2-11).
610
Tfelt-Hansen J
et al.
Inherited cardiac diseases caused by mutations in the Nav1.5 sodium channel.
J. Cardiovasc. Electrophysiol.,
2010
Jan
, 21 (107-15).
611
Kapplinger JD
et al.
An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing.
Heart Rhythm,
2010
Jan
, 7 (33-46).
612
Saba S
et al.
Effect of right ventricular versus biventricular pacing on electrical remodeling in the normal heart.
Circ Arrhythm Electrophysiol,
2010
Feb
1
, 3 (79-87).
613
Xu L
et al.
[The cardiac sodium channel gene SCN5A mutation and dilated cardiomyopathy].
Sheng Li Ke Xue Jin Zhan,
2010
Feb
, 41 (72-4).
614
Pfeufer A
et al.
Genome-wide association study of PR interval.
Nat. Genet.,
2010
Feb
, 42 (153-9).
615
Ogawa R
et al.
A novel microsatellite polymorphism of sodium channel beta1-subunit gene (SCN1B) may underlie abnormal cardiac excitation manifested by coved-type ST-elevation compatible with Brugada syndrome in Japanese.
Int J Clin Pharmacol Ther,
2010
Feb
, 48 (109-19).
616
Nakajima T
et al.
Selective gamma-ketoaldehyde scavengers protect Nav1.5 from oxidant-induced inactivation.
J. Mol. Cell. Cardiol.,
2010
Feb
, 48 (352-9).
617
Chioni AM
et al.
Protein kinase A and regulation of neonatal Nav1.5 expression in human breast cancer cells: activity-dependent positive feedback and cellular migration.
Int. J. Biochem. Cell Biol.,
2010
Feb
, 42 (346-58).
618
Stirnimann G
et al.
Brugada syndrome ECG provoked by the selective serotonin reuptake inhibitor fluvoxamine.
Europace,
2010
Feb
, 12 (282-3).
619
Fukaya H
et al.
Combined effects of up- and downstream therapies on atrial fibrillation in a canine rapid stimulation model.
,
2010
Dec
28
, ().
620
Chagot B
et al.
Solution NMR Structure of Apo-Calmodulin in Complex with the IQ Motif of Human Cardiac Sodium Channel NaV1.5.
,
2010
Dec
15
, ().
621
Hermida JS
et al.
Prospective evaluation of the familial prevalence of the brugada syndrome.
Am. J. Cardiol.,
2010
Dec
15
, 106 (1758-62).
622
Beyder A
et al.
Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel.
J. Physiol. (Lond.),
2010
Dec
15
, 588 (4969-85).
623
Amin AS
et al.
SCN5A mutations in atrial fibrillation.
Heart Rhythm,
2010
Dec
, 7 (1870-1).
624
Oh S
et al.
Remodeling of ion channel expression in patients with chronic atrial fibrillation and mitral valvular heart disease.
Korean J. Intern. Med.,
2010
Dec
, 25 (377-85).
625
Cao X
et al.
Cardiac ion channel safety profiling on the IonWorks Quattro automated patch clamp system.
Assay Drug Dev Technol,
2010
Dec
, 8 (766-80).
626
Cheng J
et al.
SCN5A rare variants in familial dilated cardiomyopathy decrease peak sodium current depending on the common polymorphism H558R and common splice variant Q1077del.
Clin Transl Sci,
2010
Dec
, 3 (287-94).
627
Blana A
et al.
Knock-in gain-of-function sodium channel mutation prolongs atrial action potentials and alters atrial vulnerability.
Heart Rhythm,
2010
Dec
, 7 (1862-9).
629
Tu E
et al.
Post-Mortem Review and Genetic Analysis of Sudden Unexpected Death in Epilepsy (SUDEP) Cases.
,
2010
Aug
24
, ().
630
Neu A
et al.
A homozygous SCN5A mutation in a severe, recessive type of cardiac conduction disease.
Hum. Mutat.,
2010
Aug
, 31 (E1609-21).
631
Guzadhur L
et al.
Atrial arrhythmogenicity in aged Scn5a+/DeltaKPQ mice modeling long QT type 3 syndrome and its relationship to Na+ channel expression and cardiac conduction.
Pflugers Arch.,
2010
Aug
, 460 (593-601).
632
Cheng HW
et al.
Pharmacological modulation of brain Nav1.2 and cardiac Nav1.5 subtypes by the local anesthetic ropivacaine.
Neurosci Bull,
2010
Aug
, 26 (289-96).
633
Chopra SS
et al.
Voltage-gated sodium channels are required for heart development in zebrafish.
Circ. Res.,
2010
Apr
30
, 106 (1342-50).
634
Ruan Y
et al.
Trafficking defects and gating abnormalities of a novel SCN5A mutation question gene-specific therapy in long QT syndrome type 3.
Circ. Res.,
2010
Apr
30
, 106 (1374-83).
635
Albert CM
et al.
Common Variants in Cardiac Ion Channel Genes Are Associated with Sudden Cardiac Death.
,
2010
Apr
17
, ().
636
Lee HA
et al.
Electrophysiological Effects of the Anti-Cancer Drug Lapatinib on Cardiac Repolarization.
,
2010
Apr
12
, ().
637
Martini B
To the editor--the compendium of SCN5A mutations.
Heart Rhythm,
2010
Apr
, 7 (e1).
638
Subbiah RN
et al.
Torsades de pointes during complete atrioventricular block: Genetic factors and electrocardiogram correlates.
Can J Cardiol,
2010
Apr
, 26 (208-12).
639
Nof E
et al.
A common single nucleotide polymorphism can exacerbate long-QT type 2 syndrome leading to sudden infant death.
Circ Cardiovasc Genet,
2010
Apr
, 3 (199-206).
640
Toh N
et al.
Atrial electrophysiological and structural remodeling in high-risk patients with Brugada syndrome: assessment with electrophysiology and echocardiography.
Heart Rhythm,
2010
, 7 (218-24).
641
Hoogendijk MG
et al.
Mechanism of right precordial ST-segment elevation in structural heart disease: excitation failure by current-to-load mismatch.
Heart Rhythm,
2010
, 7 (238-48).
642
Holst AG
et al.
Sick sinus syndrome, progressive cardiac conduction disease, atrial flutter and ventricular tachycardia caused by a novel SCN5A mutation.
Cardiology,
2010
, 115 (311-6).
643
Gui J
et al.
Multiple loss-of-function mechanisms contribute to SCN5A-related familial sick sinus syndrome.
PLoS ONE,
2010
, 5 (e10985).
644
Léoni AL
et al.
Variable Na(v)1.5 protein expression from the wild-type allele correlates with the penetrance of cardiac conduction disease in the Scn5a(+/-) mouse model.
PLoS ONE,
2010
, 5 (e9298).
645
Kotta CM
et al.
Cardiac ion channel gene mutations in Greek long QT syndrome patients.
J. Appl. Genet.,
2010
, 51 (515-8).
646
Berecki G
et al.
Re-evaluation of the action potential upstroke velocity as a measure of the Na+ current in cardiac myocytes at physiological conditions.
PLoS ONE,
2010
, 5 (e15772).
647
Cao Z
et al.
Antillatoxin is a sodium channel activator that displays unique efficacy in heterologously expressed rNav1.2, rNav1.4 and rNav1.5 α subunits.
BMC Neurosci,
2010
, 11 (154).
648
Baines AJ
et al.
Protein 4.1 and the control of ion channels.
Blood Cells Mol. Dis.,
2009 May-Jun
, 42 (211-5).
649
Lee HA
et al.
Cellular mechanism of the QT prolongation induced by sulpiride.
Int. J. Toxicol.,
2009 May-Jun
, 28 (207-12).
650
Papp F
et al.
Tst26, a novel peptide blocker of Kv1.2 and Kv1.3 channels from the venom of Tityus stigmurus.
Toxicon,
2009
Sep
15
, 54 (379-89).
651
Samani K
et al.
A nonsense SCN5A mutation associated with Brugada-type electrocardiogram and intraventricular conduction defects.
Pacing Clin Electrophysiol,
2009
Sep
, 32 (1231-6).
652
Remme CA
et al.
The cardiac sodium channel displays differential distribution in the conduction system and transmural heterogeneity in the murine ventricular myocardium.
Basic Res. Cardiol.,
2009
Sep
, 104 (511-22).
653
Kapplinger JD
et al.
Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test.
Heart Rhythm,
2009
Sep
, 6 (1297-303).
654
Samani K
et al.
A novel SCN5A mutation V1340I in Brugada syndrome augmenting arrhythmias during febrile illness.
Heart Rhythm,
2009
Sep
, 6 (1318-26).
655
Liu M
et al.
Cardiac Na+ current regulation by pyridine nucleotides.
Circ. Res.,
2009
Oct
9
, 105 (737-45).
656
Heron SE
et al.
Neonatal seizures and Long QT Syndrome: A cardiocerebral channelopathy?
Epilepsia,
2009
Oct
27
, ().
657
Lizotte E
et al.
Genetic modulation of brugada syndrome by a common polymorphism.
J. Cardiovasc. Electrophysiol.,
2009
Oct
, 20 (1137-41).
658
Valdivia CR
et al.
GPD1L links redox state to cardiac excitability by PKC-dependent phosphorylation of the sodium channel SCN5A.
Am. J. Physiol. Heart Circ. Physiol.,
2009
Oct
, 297 (H1446-52).
659
Silver ES
et al.
Long QT syndrome due to a novel mutation in SCN5A: treatment with ICD placement at 1 month and left cardiac sympathetic denervation at 3 months of age.
J Interv Card Electrophysiol,
2009
Oct
, 26 (41-5).
660
Amin AS
et al.
Exercise-induced ECG changes in Brugada syndrome.
Circ Arrhythm Electrophysiol,
2009
Oct
, 2 (531-9).
661
Kapa S
et al.
Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants.
Circulation,
2009
Nov
3
, 120 (1752-60).
663
Soltysinska E
et al.
Transmural expression of ion channels and transporters in human nondiseased and end-stage failing hearts.
Pflugers Arch.,
2009
Nov
, 459 (11-23).
664
Nakatome M
et al.
Diplotype analysis of the human cardiac sodium channel regulatory region in Japanese cases of sudden death by unknown causes.
Leg Med (Tokyo),
2009
Nov
, 11 (298-301).
665
Maguy A
et al.
Ion channel subunit expression changes in cardiac Purkinje fibers: a potential role in conduction abnormalities associated with congestive heart failure.
Circ. Res.,
2009
May
8
, 104 (1113-22).
666
Nishio H
et al.
Identification of an ethnic-specific variant (V207M) of the KCNQ1 cardiac potassium channel gene in sudden unexplained death and implications from a knock-in mouse model.
Int. J. Legal Med.,
2009
May
, 123 (253-7).
667
Makita N
Phenotypic overlap of cardiac sodium channelopathies: individual-specific or mutation-specific?
Circ. J.,
2009
May
, 73 (810-7).
668
Maltsev VA
et al.
Late Na+ current produced by human cardiac Na+ channel isoform Nav1.5 is modulated by its beta1 subunit.
J Physiol Sci,
2009
May
, 59 (217-25).
669
Ruan Y
et al.
Sodium channel mutations and arrhythmias.
Nat Rev Cardiol,
2009
May
, 6 (337-48).
670
Okazaki R
et al.
lipopolysaccharide induces atrial arrhythmogenesis via down-regulation of L-type Ca2+ channel genes in rats.
,
2009
May
, 50 (353-63).
671
Smith JG
et al.
Genome-wide association study of electrocardiographic conduction measures in an isolated founder population: Kosrae.
Heart Rhythm,
2009
May
, 6 (634-41).
672
Chagot B
et al.
Solution NMR structure of the C-terminal EF-hand domain of human cardiac sodium channel NaV1.5.
J. Biol. Chem.,
2009
Mar
6
, 284 (6436-45).
673
Miloushev VZ
et al.
Solution structure of the NaV1.2 C-terminal EF-hand domain.
J. Biol. Chem.,
2009
Mar
6
, 284 (6446-54).
674
Huang H
et al.
Biophysical characterization of a new SCN5A mutation S1333Y in a SIDS infant linked to long QT syndrome.
FEBS Lett.,
2009
Mar
4
, 583 (890-6).
676
Aurlien D
et al.
New SCN5A mutation in a SUDEP victim with idiopathic epilepsy.
,
2009
Mar
, 18 (158-60).
677
Kawamura M
et al.
Dynamic change in ST-segment and spontaneous occurrence of ventricular fibrillation in Brugada syndrome with a novel nonsense mutation in the SCN5A gene during long-term follow-up.
Circ. J.,
2009
Mar
, 73 (584-8).
678
Meregalli PG
et al.
Type of SCN5A mutation determines clinical severity and degree of conduction slowing in loss-of-function sodium channelopathies.
,
2009
Mar
, 6 (341-8).
679
Tfelt-Hansen J
et al.
Ventricular tachycardia in a Brugada syndrome patient caused by a novel deletion in SCN5A.
,
2009
Mar
, 25 (156-60).
680
Remme CA
et al.
Genetically determined differences in sodium current characteristics modulate conduction disease severity in mice with cardiac sodium channelopathy.
Circ. Res.,
2009
Jun
5
, 104 (1283-92).
681
Hedley PL
et al.
The genetic basis of Brugada syndrome: A mutation update.
Hum. Mutat.,
2009
Jun
16
, ().
682
Lacunza J
et al.
Heat stroke, an unusual trigger of Brugada electrocardiogram.
,
2009
Jun
, 27 (634.e1-3).
683
Bush WS
et al.
Genetic variation in the rhythmonome: ethnic variation and haplotype structure in candidate genes for arrhythmias.
Pharmacogenomics,
2009
Jun
, 10 (1043-53).
684
Hu D
et al.
A mutation in the beta 3 subunit of the cardiac sodium channel associated with Brugada ECG phenotype.
Circ Cardiovasc Genet,
2009
Jun
, 2 (270-8).
685
Watanabe H
et al.
Mutations in sodium channel beta1- and beta2-subunits associated with atrial fibrillation.
Circ Arrhythm Electrophysiol,
2009
Jun
, 2 (268-75).
686
Stein M
et al.
Combined reduction of intercellular coupling and membrane excitability differentially affects transverse and longitudinal cardiac conduction.
Cardiovasc. Res.,
2009
Jul
1
, 83 (52-60).
687
Frustaci A
et al.
Structural myocardial abnormalities in asymptomatic family members with Brugada syndrome and SCN5A gene mutation.
Eur. Heart J.,
2009
Jul
, 30 (1763).
688
Turillazzi E
et al.
Immunohistochemical marker for Na+ CP type Valpha (C-20) and heterozygous nonsense SCN5A mutation W822X in a sudden cardiac death induced by mild anaphylactic reaction.
Appl. Immunohistochem. Mol. Morphol.,
2009
Jul
, 17 (357-62).
689
Wu SN
et al.
The mechanism of the actions of oxaliplatin on ion currents and action potentials in differentiated NG108-15 neuronal cells.
Neurotoxicology,
2009
Jul
, 30 (677-85).
690
Carlsson L
et al.
Assessment of the ion channel-blocking profile of the novel combined ion channel blocker AZD1305 and its proarrhythmic potential versus dofetilide in the methoxamine-sensitized rabbit in vivo.
J. Cardiovasc. Pharmacol.,
2009
Jul
, 54 (82-9).
691
Dautova Y
et al.
Atrial arrhythmogenesis in wild-type and Scn5a+/delta murine hearts modelling LQT3 syndrome.
Pflugers Arch.,
2009
Jul
, 458 (443-57).
692
Lau DH
et al.
Epicardial border zone overexpression of skeletal muscle sodium channel SkM1 normalizes activation, preserves conduction, and suppresses ventricular arrhythmia: an in silico, in vivo, in vitro study.
Circulation,
2009
Jan
6
, 119 (19-27).
693
Johnson JN
et al.
Identification of a possible pathogenic link between congenital long QT syndrome and epilepsy.
Neurology,
2009
Jan
20
, 72 (224-31).
694
Farre C
et al.
Port-a-patch and patchliner: high fidelity electrophysiology for secondary screening and safety pharmacology.
Comb. Chem. High Throughput Screen.,
2009
Jan
, 12 (24-37).
695
Lehtinen AB
et al.
Relationship between genetic variants in myocardial sodium and potassium channel genes and QT interval duration in diabetics: the Diabetes Heart Study.
Ann Noninvasive Electrocardiol,
2009
Jan
, 14 (72-9).
696
Li Q
et al.
Gain-of-function mutation of Nav1.5 in atrial fibrillation enhances cellular excitability and lowers the threshold for action potential firing.
Biochem. Biophys. Res. Commun.,
2009
Feb
27
, 380 (132-7).
697
Protas L
et al.
Expression of skeletal but not cardiac Na+ channel isoform preserves normal conduction in a depolarized cardiac syncytium.
Cardiovasc. Res.,
2009
Feb
15
, 81 (528-35).
698
Gaborit N
et al.
Transcriptional profiling of ion channel genes in Brugada syndrome and other right ventricular arrhythmogenic diseases.
Eur. Heart J.,
2009
Feb
, 30 (487-96).
699
Saito YA
et al.
Sodium channel mutation in irritable bowel syndrome: evidence for an ion channelopathy.
Am. J. Physiol. Gastrointest. Liver Physiol.,
2009
Feb
, 296 (G211-8).
700
Bai R
et al.
Yield of genetic screening in inherited cardiac channelopathies: how to prioritize access to genetic testing.
Circ Arrhythm Electrophysiol,
2009
Feb
, 2 (6-15).
701
Husser D
et al.
A genotype-dependent intermediate ECG phenotype in patients with persistent lone atrial fibrillation genotype ECG-phenotype correlation in atrial fibrillation.
Circ Arrhythm Electrophysiol,
2009
Feb
, 2 (24-8).
702
Gao R
et al.
Functional expression of voltage-gated sodium channels Nav1.5 in human breast cancer cell line MDA-MB-231.
J. Huazhong Univ. Sci. Technol. Med. Sci.,
2009
Feb
, 29 (64-7).
703
Onkal R
et al.
Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease: clinical potential of neonatal Nav1.5 in breast cancer.
Eur. J. Pharmacol.,
2009
Dec
25
, 625 (206-19).
704
Cheng J
et al.
Alpha1-syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current.
Circ Arrhythm Electrophysiol,
2009
Dec
, 2 (667-76).
706
Shi RM
et al.
[Gene mutation analysis of a Chinese family of congenital long Q-T syndrome type three.]
Zhonghua Er Ke Za Zhi,
2009
Dec
, 47 (926-30).
707
Probst V
et al.
SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome.
Circ Cardiovasc Genet,
2009
Dec
, 2 (552-7).
708
Iturralde-Torres P
et al.
[Genetic in long QT syndromes]
Arch Cardiol Mex,
2009
Dec
, 79 Suppl 2 (26-30).
709
Black JA
et al.
Sodium channel activity modulates multiple functions in microglia.
Glia,
2009
Aug
1
, 57 (1072-81).
710
Teng S
et al.
Readthrough of nonsense mutation W822X in the SCN5A gene can effectively restore expression of cardiac Na+ channels.
Cardiovasc. Res.,
2009
Aug
1
, 83 (473-80).
711
Crotti L
et al.
Novel human pathological mutations. Gene symbol: SCN5A. Disease: Brugada Syndrome.
Hum. Genet.,
2009
Aug
, 126 (339).
712
Benson DW
Compound heterozygous SCN5A mutations: does the sum of the parts equal the whole?
Heart Rhythm,
2009
Aug
, 6 (1176-7).
713
Lindegger N
et al.
Diastolic transient inward current in long QT syndrome type 3 is caused by Ca2+ overload and inhibited by ranolazine.
J. Mol. Cell. Cardiol.,
2009
Aug
, 47 (326-34).
714
Wang J
et al.
Analysis of four novel variants of Nav1.5/SCN5A cloned from the brain.
Neurosci. Res.,
2009
Aug
, 64 (339-47).
715
Sangawa M
et al.
Abnormal transmural repolarization process in patients with Brugada syndrome.
Heart Rhythm,
2009
Aug
, 6 (1163-9).
716
Medeiros-Domingo A
et al.
Unique mixed phenotype and unexpected functional effect revealed by novel compound heterozygosity mutations involving SCN5A.
Heart Rhythm,
2009
Aug
, 6 (1170-5).
717
Xi Y
et al.
Increased late sodium currents are related to transcription of neuronal isoforms in a pressure-overload model.
Eur. J. Heart Fail.,
2009
Aug
, 11 (749-57).
718
Tfelt-Hansen J
et al.
[Inherited cardiac diseases caused by Nav1.5 sodium channel mutations]
Ugeskr. Laeg.,
2009
Apr
6
, 171 (1261-5).
719
Millat G
et al.
Rapid, sensitive and inexpensive detection of SCN5A genetic variations by high resolution melting analysis.
Clin. Biochem.,
2009
Apr
, 42 (491-9).
720
Desaphy JF
et al.
Involvement of voltage-gated sodium channels blockade in the analgesic effects of orphenadrine.
Pain,
2009
Apr
, 142 (225-35).
721
Morita H
et al.
Differential effects of cardiac sodium channel mutations on initiation of ventricular arrhythmias in patients with Brugada syndrome.
,
2009
Apr
, 6 (487-92).
722
Oliva A
et al.
SCN5A mutation associated with acute myocardial infarction.
Leg Med (Tokyo),
2009
Apr
, 11 Suppl 1 (S206-9).
723
Pfeufer A
et al.
Common variants at ten loci modulate the QT interval duration in the QTSCD Study.
Nat. Genet.,
2009
Apr
, 41 (407-14).
724
Newton-Cheh C
et al.
Common variants at ten loci influence QT interval duration in the QTGEN Study.
Nat. Genet.,
2009
Apr
, 41 (399-406).
725
Hsueh CH
et al.
Distinct functional defect of three novel Brugada syndrome related cardiac sodium channel mutations.
J. Biomed. Sci.,
2009
, 16 (23).
726
Thakor DK
et al.
Increased peripheral nerve excitability and local NaV1.8 mRNA up-regulation in painful neuropathy.
,
2009
, 5 (14).
727
Wang L
et al.
Ionic mechanisms underlying action potential prolongation by focal cerebral ischemia in rat ventricular myocytes.
Cell. Physiol. Biochem.,
2009
, 23 (305-16).
728
Kinoshita-Kikuta E
et al.
Zn(II)-cyclen polyacrylamide gel electrophoresis for SNP detection.
Methods Mol. Biol.,
2009
, 578 (169-82).
729
Chiang KC
et al.
Characterization of a novel Nav1.5 channel mutation, A551T, associated with Brugada syndrome.
J. Biomed. Sci.,
2009
, 16 (76).
730
Lei M
et al.
Genetic Na+ channelopathies and sinus node dysfunction.
Prog. Biophys. Mol. Biol.,
2008 Oct-Nov
, 98 (171-8).
731
Zimmer T
et al.
SCN5A channelopathies--an update on mutations and mechanisms.
Prog. Biophys. Mol. Biol.,
2008 Oct-Nov
, 98 (120-36).
732
Charpentier F
et al.
Mouse models of SCN5A-related cardiac arrhythmias.
Prog. Biophys. Mol. Biol.,
2008 Oct-Nov
, 98 (230-7).
733
Hakim P
et al.
Scn3b knockout mice exhibit abnormal ventricular electrophysiological properties.
Prog. Biophys. Mol. Biol.,
2008 Oct-Nov
, 98 (251-66).
734
Hothi SS
et al.
Arrhythmogenic substrate and its modification by nicorandil in a murine model of long QT type 3 syndrome.
Prog. Biophys. Mol. Biol.,
2008 Oct-Nov
, 98 (267-80).
735
Wang J
et al.
New variants of Nav1.5/SCN5A encode Na+ channels in the brain.
J. Neurogenet.,
2008 Jan-Mar
, 22 (57-75).
736
Harmer AR
et al.
Optimisation and validation of a medium-throughput electrophysiology-based hNav1.5 assay using IonWorks.
,
2008 Jan-Feb
, 57 (30-41).
737
Christé G
et al.
Changes in action potentials and intracellular ionic homeostasis in a ventricular cell model related to a persistent sodium current in SCN5A mutations underlying LQT3.
Prog. Biophys. Mol. Biol.,
2008 Jan-Apr
, 96 (281-93).
738
Kinoshita E
et al.
Detection of the Gua/Cyt-to-Cyt/Gua mutation in a Gua/Cyt-lined sequence using Zn2+-cyclen polyacrylamide gel electrophoresis.
Anal. Biochem.,
2008
Sep
1
, 380 (122-7).
739
Onkal R
et al.
Alternative splicing of Nav1.5: an electrophysiological comparison of 'neonatal' and 'adult' isoforms and critical involvement of a lysine residue.
J. Cell. Physiol.,
2008
Sep
, 216 (716-26).
740
Feng XH
et al.
Electrophysiological characterization of BmK I, an alpha-like scorpion toxin, on rNav1.5 expressed in HEK293t cells.
Toxicol In Vitro,
2008
Sep
, 22 (1582-7).
741
Bierhuizen MF
et al.
In calcineurin-induced cardiac hypertrophy expression of Nav1.5, Cx40 and Cx43 is reduced by different mechanisms.
J. Mol. Cell. Cardiol.,
2008
Sep
, 45 (373-84).
742
Eddy CA
et al.
Identification of large gene deletions and duplications in KCNQ1 and KCNH2 in patients with long QT syndrome.
Heart Rhythm,
2008
Sep
, 5 (1275-81).
743
Xiao Y
et al.
Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain ii voltage sensor in the closed configuration.
J. Biol. Chem.,
2008
Oct
3
, 283 (27300-13).
744
Hong L
et al.
Letter by Hong et al regarding article, "Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation".
Circulation,
2008
Oct
14
, 118 (e668; author reply e669).
745
Makiyama T
et al.
A novel SCN5A gain-of-function mutation M1875T associated with familial atrial fibrillation.
J. Am. Coll. Cardiol.,
2008
Oct
14
, 52 (1326-34).
746
Stagg MA
et al.
Cytoskeletal protein 4.1R affects repolarization and regulates calcium handling in the heart.
Circ. Res.,
2008
Oct
10
, 103 (855-63).
747
Benito B
et al.
A mutation in the sodium channel is responsible for the association of long QT syndrome and familial atrial fibrillation.
Heart Rhythm,
2008
Oct
, 5 (1434-40).
748
Nyholt DR
et al.
A high-density association screen of 155 ion transport genes for involvement with common migraine.
Hum. Mol. Genet.,
2008
Nov
1
, 17 (3318-31).
749
Lindegger N
et al.
Look beyond the hERG mutation: a neutral SCN5A variant may turn lidocaine into a threat.
Heart Rhythm,
2008
Nov
, 5 (1575-6).
750
Remme CA
et al.
SCN5A overlap syndromes: no end to disease complexity?
Europace,
2008
Nov
, 10 (1253-5).
751
Otagiri T
et al.
Cardiac ion channel gene mutations in sudden infant death syndrome.
Pediatr. Res.,
2008
Nov
, 64 (482-7).
752
Lin MT
et al.
In utero onset of long QT syndrome with atrioventricular block and spontaneous or lidocaine-induced ventricular tachycardia: compound effects of hERG pore region mutation and SCN5A N-terminus variant.
Heart Rhythm,
2008
Nov
, 5 (1567-74).
753
754
Yuan BB
et al.
[Detection of gene mutations of SCN5A in 7 patients with Brugada syndrome]
Zhonghua Xin Xue Guan Bing Za Zhi,
2008
May
, 36 (404-7).
755
Van Norstrand DW
et al.
Overrepresentation of the proarrhythmic, sudden death predisposing sodium channel polymorphism S1103Y in a population-based cohort of African-American sudden infant death syndrome.
Heart Rhythm,
2008
May
, 5 (712-5).
756
Johnson JN
et al.
Prevalence of early-onset atrial fibrillation in congenital long QT syndrome.
Heart Rhythm,
2008
May
, 5 (704-9).
757
Hershberger RE
et al.
Coding sequence mutations identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 patients with familial or idiopathic dilated cardiomyopathy.
Clin Transl Sci,
2008
May
, 1 (21-6).
758
Holland KD
et al.
Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy.
Neurosci. Lett.,
2008
Mar
5
, 433 (65-70).
759
Kusano KF
et al.
Atrial fibrillation in patients with Brugada syndrome relationships of gene mutation, electrophysiology, and clinical backgrounds.
J. Am. Coll. Cardiol.,
2008
Mar
25
, 51 (1169-75).
760
Wu L
et al.
Identification of a new co-factor, MOG1, required for the full function of cardiac sodium channel Nav 1.5.
J. Biol. Chem.,
2008
Mar
14
, 283 (6968-78).
761
Surber R
et al.
Combination of cardiac conduction disease and long QT syndrome caused by mutation T1620K in the cardiac sodium channel.
Cardiovasc. Res.,
2008
Mar
1
, 77 (740-8).
762
Yang P
et al.
Polymorphisms in the cardiac sodium channel promoter displaying variant in vitro expression activity.
Eur. J. Hum. Genet.,
2008
Mar
, 16 (350-7).
763
Wang GK
et al.
State- and use-dependent block of muscle Nav1.4 and neuronal Nav1.7 voltage-gated Na+ channel isoforms by ranolazine.
Mol. Pharmacol.,
2008
Mar
, 73 (940-8).
764
Saint DA
The cardiac persistent sodium current: an appealing therapeutic target?
Br. J. Pharmacol.,
2008
Mar
, 153 (1133-42).
765
Doolan A
et al.
Postmortem molecular analysis of KCNQ1 and SCN5A genes in sudden unexplained death in young Australians.
Int. J. Cardiol.,
2008
Jun
23
, 127 (138-41).
766
Mazzone A
et al.
A mutation in telethonin alters Nav1.5 function.
J. Biol. Chem.,
2008
Jun
13
, 283 (16537-44).
767
Petitprez S
et al.
Analyses of a novel SCN5A mutation (C1850S): conduction vs. repolarization disorder hypotheses in the Brugada syndrome.
Cardiovasc. Res.,
2008
Jun
1
, 78 (494-504).
768
Ge J
et al.
Molecular and clinical characterization of a novel SCN5A mutation associated with atrioventricular block and dilated cardiomyopathy.
Circ Arrhythm Electrophysiol,
2008
Jun
1
, 1 (83-92).
769
Crotti L
et al.
Gene symbol: SCN5A. Disease: Brugada syndrome.
Hum. Genet.,
2008
Jun
, 123 (542).
770
Crotti L
et al.
Gene symbol: SCN5A. Disease: Brugada syndrome.
Hum. Genet.,
2008
Jun
, 123 (542).
771
Makita N
et al.
The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome.
J. Clin. Invest.,
2008
Jun
, 118 (2219-29).
772
Watanabe H
et al.
Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans.
J. Clin. Invest.,
2008
Jun
, 118 (2260-8).
773
Makita N
et al.
Absence of a trafficking defect in R1232W/T1620M, a double SCN5A mutant responsible for Brugada syndrome.
Circ. J.,
2008
Jun
, 72 (1018-9).
774
Ueda K
et al.
Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex.
Proc. Natl. Acad. Sci. U.S.A.,
2008
Jul
8
, 105 (9355-60).
775
776
Erkapic D
et al.
Electrical storm in a patient with arrhythmogenic right ventricular cardiomyopathy and SCN5A mutation.
,
2008
Jul
, 10 (884-7).
777
Bébarová M
et al.
Subepicardial phase 0 block and discontinuous transmural conduction underlie right precordial ST-segment elevation by a SCN5A loss-of-function mutation.
Am. J. Physiol. Heart Circ. Physiol.,
2008
Jul
, 295 (H48-58).
778
Albert CM
et al.
Cardiac sodium channel gene variants and sudden cardiac death in women.
Circulation,
2008
Jan
1
, 117 (16-23).
779
Sabir IN
et al.
Criteria for arrhythmogenicity in genetically-modified Langendorff-perfused murine hearts modelling the congenital long QT syndrome type 3 and the Brugada syndrome.
Pflugers Arch.,
2008
Jan
, 455 (637-51).
780
Shang LL
et al.
NF-kappaB-dependent transcriptional regulation of the cardiac scn5a sodium channel by angiotensin II.
Am. J. Physiol., Cell Physiol.,
2008
Jan
, 294 (C372-9).
781
Ellinor PT
et al.
Cardiac sodium channel mutation in atrial fibrillation.
,
2008
Jan
, 5 (99-105).
782
783
Nguyen TP
et al.
Divergent biophysical defects caused by mutant sodium channels in dilated cardiomyopathy with arrhythmia.
Circ. Res.,
2008
Feb
15
, 102 (364-71).
784
Kort ME
et al.
Discovery and biological evaluation of 5-aryl-2-furfuramides, potent and selective blockers of the Nav1.8 sodium channel with efficacy in models of neuropathic and inflammatory pain.
J. Med. Chem.,
2008
Feb
14
, 51 (407-16).
785
Wu L
et al.
Augmentation of late sodium current unmasks the proarrhythmic effects of amiodarone.
Cardiovasc. Res.,
2008
Feb
1
, 77 (481-8).
786
Sun A
et al.
SCN5A R1193Q polymorphism associated with progressive cardiac conduction defects and long QT syndrome in a Chinese family.
J. Med. Genet.,
2008
Feb
, 45 (127-8).
787
Wada A
et al.
Voltage-dependent Na(v)1.7 sodium channels: multiple roles in adrenal chromaffin cells and peripheral nervous system.
Acta Physiol (Oxf),
2008
Feb
, 192 (221-31).
788
Fukaya H
et al.
Inhomogenic effect of bepridil on atrial electrical remodeling in a canine rapid atrial stimulation model.
Circ. J.,
2008
Feb
, 72 (318-26).
789
Takemasa H
et al.
Coexistence of hERG current block and disruption of protein trafficking in ketoconazole-induced long QT syndrome.
Br. J. Pharmacol.,
2008
Feb
, 153 (439-47).
790
Zhang Y
et al.
Correlations between clinical and physiological consequences of the novel mutation R878C in a highly conserved pore residue in the cardiac Na+ channel.
Acta Physiol (Oxf),
2008
Dec
, 194 (311-23).
791
Shimizu W
Clinical impact of genetic studies in lethal inherited cardiac arrhythmias.
Circ. J.,
2008
Dec
, 72 (1926-36).
792
Wang DW
et al.
Malignant perinatal variant of long-QT syndrome caused by a profoundly dysfunctional cardiac sodium channel.
Circ Arrhythm Electrophysiol,
2008
Dec
, 1 (370-8).
793
Moss AJ
et al.
Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome.
J. Cardiovasc. Electrophysiol.,
2008
Dec
, 19 (1289-93).
794
Barajas-Martínez HM
et al.
Lidocaine-induced Brugada syndrome phenotype linked to a novel double mutation in the cardiac sodium channel.
Circ. Res.,
2008
Aug
15
, 103 (396-404).
795
Turillazzi E
et al.
Heterozygous nonsense SCN5A mutation W822X explains a simultaneous sudden infant death syndrome.
Virchows Arch.,
2008
Aug
, 453 (209-16).
796
Maltsev VA
et al.
Molecular identity of the late sodium current in adult dog cardiomyocytes identified by Nav1.5 antisense inhibition.
Am. J. Physiol. Heart Circ. Physiol.,
2008
Aug
, 295 (H667-76).
797
Olszak-Waśkiewicz M
et al.
The association between SCN5A, KCNQ1 and KCNE1 gene polymorphisms and complex ventricular arrhythmias in survivors of myocardial infarction.
,
2008
Aug
, 66 (845-53; discussion 854-5).
798
Koskela J
et al.
Effect of common KCNE1 and SCN5A ion channel gene variants on T-wave alternans, a marker of cardiac repolarization, during clinical exercise stress test: the Finnish Cardiovascular Study.
Transl Res,
2008
Aug
, 152 (49-58).
799
Darbar D
et al.
Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation.
Circulation,
2008
Apr
15
, 117 (1927-35).
800
Domínguez JN
et al.
Tissue distribution and subcellular localization of the cardiac sodium channel during mouse heart development.
Cardiovasc. Res.,
2008
Apr
1
, 78 (45-52).
801
Thomas G
et al.
Pharmacological separation of early afterdepolarizations from arrhythmogenic substrate in DeltaKPQ Scn5a murine hearts modelling human long QT 3 syndrome.
Acta Physiol (Oxf),
2008
Apr
, 192 (505-17).
802
Fang DH
et al.
Association of human SCN5A polymorphisms with idiopathic ventricular arrhythmia in a Chinese Han cohort.
Circ. J.,
2008
Apr
, 72 (592-7).
803
Shan L
et al.
SCN5A variants in Japanese patients with left ventricular noncompaction and arrhythmia.
Mol. Genet. Metab.,
2008
Apr
, 93 (468-74).
804
Zhang Y
et al.
Single nucleotide polymorphisms and haplotype of four genes encoding cardiac ion channels in Chinese and their association with arrhythmia.
Ann Noninvasive Electrocardiol,
2008
Apr
, 13 (180-90).
805
Remme CA
et al.
Cardiac sodium channel overlap syndromes: different faces of SCN5A mutations.
Trends Cardiovasc. Med.,
2008
Apr
, 18 (78-87).
806
Oliva A
et al.
Clinical heterogeneity in sodium channelopathies. What is the meaning of carrying a genetic mutation?
Cardiology,
2008
, 110 (116-22).
807
Raudenská M
et al.
Mutation analysis of candidate genes SCN1B, KCND3 and ANK2 in patients with clinical diagnosis of long QT syndrome.
Physiol Res,
2008
, 57 (857-62).
809
Berge KE
et al.
Molecular genetic analysis of long QT syndrome in Norway indicating a high prevalence of heterozygous mutation carriers.
Scand. J. Clin. Lab. Invest.,
2008
, 68 (362-8).
810
Drago A
et al.
Strategy for a genetic assessment of antipsychotic and antidepressant-related proarrhythmia.
Curr. Med. Chem.,
2008
, 15 (2472-517).
811
Márquez MF
et al.
A novel SCN5A deletion mutation in a child with ventricular tachycardia, recurrent aborted sudden death, and Brugada electrocardiographic pattern.
,
2007 Oct-Dec
, 77 (284-7).
812
Hu D
et al.
Genetic predisposition and cellular basis for ischemia-induced ST-segment changes and arrhythmias.
,
2007 Nov-Dec
, 40 (S26-9).
813
Zhu ZI
et al.
Genetic mutations and arrhythmia: simulation from DNA to electrocardiogram.
,
2007 Nov-Dec
, 40 (S47-50).
815
Bankston JR
et al.
A novel LQT-3 mutation disrupts an inactivation gate complex with distinct rate-dependent phenotypic consequences.
Channels (Austin),
2007 Jul-Aug
, 1 (273-80).
816
Ruan Y
et al.
Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients.
Circulation,
2007
Sep
4
, 116 (1137-44).
817
Zhang Y
et al.
A missense mutation (G604S) in the S5/pore region of HERG causes long QT syndrome in a Chinese family with a high incidence of sudden unexpected death.
Eur. J. Pediatr.,
2007
Sep
, 166 (927-33).
818
Gouas L
et al.
Confirmation of associations between ion channel gene SNPs and QTc interval duration in healthy subjects.
Eur. J. Hum. Genet.,
2007
Sep
, 15 (974-9).
819
Aizawa Y
et al.
A novel mutation in KCNQ1 associated with a potent dominant negative effect as the basis for the LQT1 form of the long QT syndrome.
J. Cardiovasc. Electrophysiol.,
2007
Sep
, 18 (972-7).
820
Abriel H
Cardiac sodium channel Nav1.5 and its associated proteins.
Arch Mal Coeur Vaiss,
2007
Sep
, 100 (787-93).
821
Etheridge SP
et al.
Long QT syndrome in children in the era of implantable defibrillators.
J. Am. Coll. Cardiol.,
2007
Oct
2
, 50 (1335-40).
822
Clancy CE
et al.
Mutation-specific effects of lidocaine in Brugada syndrome.
Int. J. Cardiol.,
2007
Oct
18
, 121 (249-52).
823
Itoh H
et al.
A paradoxical effect of lidocaine for the N406S mutation of SCN5A associated with Brugada syndrome.
Int. J. Cardiol.,
2007
Oct
18
, 121 (239-48).
824
Chung SK
et al.
Long QT and Brugada syndrome gene mutations in New Zealand.
,
2007
Oct
, 4 (1306-14).
825
Shang LL
et al.
Human heart failure is associated with abnormal C-terminal splicing variants in the cardiac sodium channel.
Circ. Res.,
2007
Nov
26
, 101 (1146-54).
826
London B
et al.
Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias.
Circulation,
2007
Nov
13
, 116 (2260-8).
827
Seda M
et al.
Functional and molecular characterization of voltage-gated sodium channels in uteri from nonpregnant rats.
Biol. Reprod.,
2007
Nov
, 77 (855-63).
828
Pignier C
et al.
Direct protective effects of poly-unsaturated fatty acids, DHA and EPA, against activation of cardiac late sodium current: a mechanism for ischemia selectivity.
Basic Res. Cardiol.,
2007
Nov
, 102 (553-64).
829
Lezoualc'h F
et al.
Quantitative mRNA analysis of serotonin 5-HT4 receptor isoforms, calcium handling proteins and ion channels in human atrial fibrillation.
Biochem. Biophys. Res. Commun.,
2007
May
25
, 357 (218-24).
830
Stokoe KS
et al.
Effects of flecainide and quinidine on arrhythmogenic properties of Scn5a+/- murine hearts modelling the Brugada syndrome.
J. Physiol. (Lond.),
2007
May
15
, 581 (255-75).
831
Wang SY
et al.
Serine-401 as a batrachotoxin- and local anesthetic-sensing residue in the human cardiac Na+ channel.
Pflugers Arch.,
2007
May
, 454 (277-87).
832
Vanmolkot KR
et al.
The novel p.L1649Q mutation in the SCN1A epilepsy gene is associated with familial hemiplegic migraine: genetic and functional studies. Mutation in brief #957. Online.
Hum. Mutat.,
2007
May
, 28 (522).
833
Skinner JR
et al.
Brugada syndrome masquerading as febrile seizures.
Pediatrics,
2007
May
, 119 (e1206-11).
834
Wu L
et al.
Induction of high STAT1 expression in transgenic mice with LQTS and heart failure.
Biochem. Biophys. Res. Commun.,
2007
Jun
29
, 358 (449-54).
835
Carrithers MD
et al.
Expression of the voltage-gated sodium channel NaV1.5 in the macrophage late endosome regulates endosomal acidification.
J. Immunol.,
2007
Jun
15
, 178 (7822-32).
836
Lei M
et al.
SCN5A and sinoatrial node pacemaker function.
Cardiovasc. Res.,
2007
Jun
1
, 74 (356-65).
837
Du Y
et al.
Downregulation of neuronal sodium channel subunits Nav1.1 and Nav1.6 in the sinoatrial node from volume-overloaded heart failure rat.
Pflugers Arch.,
2007
Jun
, 454 (451-9).
838
Kerr NC
et al.
The sodium channel Nav1.5a is the predominant isoform expressed in adult mouse dorsal root ganglia and exhibits distinct inactivation properties from the full-length Nav1.5 channel.
Mol. Cell. Neurosci.,
2007
Jun
, 35 (283-91).
839
Frigo G
et al.
Homozygous SCN5A mutation in Brugada syndrome with monomorphic ventricular tachycardia and structural heart abnormalities.
,
2007
Jun
, 9 (391-7).
840
de Boer TP
et al.
Beta-, not alpha-adrenergic stimulation enhances conduction velocity in cultures of neonatal cardiomyocytes.
Circ. J.,
2007
Jun
, 71 (973-81).
841
Koo SH
et al.
Mutation screening in KCNQ1, HERG, KCNE1, KCNE2 and SCN5A genes in a long QT syndrome family.
Ann. Acad. Med. Singap.,
2007
Jun
, 36 (394-8).
842
Kiehne N
et al.
Mutations in the SCN5A gene: evidence for a link between long QT syndrome and sudden death?
Forensic Sci Int Genet,
2007
Jun
, 1 (170-4).
843
Flaim SN
et al.
Arrhythmogenic consequences of Na+ channel mutations in the transmurally heterogeneous mammalian left ventricle: analysis of the I1768V SCN5A mutation.
Heart Rhythm,
2007
Jun
, 4 (768-78).
844
Koopmann TT
et al.
Exclusion of multiple candidate genes and large genomic rearrangements in SCN5A in a Dutch Brugada syndrome cohort.
Heart Rhythm,
2007
Jun
, 4 (752-5).
845
Gaborit N
et al.
Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart.
J. Physiol. (Lond.),
2007
Jul
15
, 582 (675-93).
846
Medeiros-Domingo A
et al.
SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome.
Circulation,
2007
Jul
10
, 116 (134-42).
847
Liao Z
et al.
Solution structure of Jingzhaotoxin-III, a peptide toxin inhibiting both Nav1.5 and Kv2.1 channels.
Toxicon,
2007
Jul
, 50 (135-43).
848
Ouyang W
et al.
Isoform-selective effects of isoflurane on voltage-gated Na+ channels.
Anesthesiology,
2007
Jul
, 107 (91-8).
849
Shin DJ
et al.
A novel mutation in the SCN5A gene is associated with Brugada syndrome.
Life Sci.,
2007
Jan
30
, 80 (716-24).
850
Tian XL
et al.
Optical mapping of ventricular arrhythmias in LQTS mice with SCN5A mutation N1325S.
Biochem. Biophys. Res. Commun.,
2007
Jan
26
, 352 (879-83).
851
Wang DW
et al.
Cardiac sodium channel dysfunction in sudden infant death syndrome.
Circulation,
2007
Jan
23
, 115 (368-76).
852
Arnestad M
et al.
Prevalence of long-QT syndrome gene variants in sudden infant death syndrome.
Circulation,
2007
Jan
23
, 115 (361-7).
853
Yong SL
et al.
Characterization of the cardiac sodium channel SCN5A mutation, N1325S, in single murine ventricular myocytes.
Biochem. Biophys. Res. Commun.,
2007
Jan
12
, 352 (378-83).
854
Stokoe KS
et al.
Effects of flecainide and quinidine on arrhythmogenic properties of Scn5a+/Delta murine hearts modelling long QT syndrome 3.
J. Physiol. (Lond.),
2007
Jan
1
, 578 (69-84).
855
Thomas G
et al.
Effects of L-type Ca2+ channel antagonism on ventricular arrhythmogenesis in murine hearts containing a modification in the Scn5a gene modelling human long QT syndrome 3.
J. Physiol. (Lond.),
2007
Jan
1
, 578 (85-97).
856
Brackenbury WJ
et al.
The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells.
Breast Cancer Res. Treat.,
2007
Jan
, 101 (149-60).
857
Vecchietti S
et al.
In silico assessment of Y1795C and Y1795H SCN5A mutations: implication for inherited arrhythmogenic syndromes.
Am. J. Physiol. Heart Circ. Physiol.,
2007
Jan
, 292 (H56-65).
858
Nakano Y
et al.
Non-SCN5A related Brugada syndromes: verification of normal splicing and trafficking of SCN5A without exonic mutations.
Ann. Hum. Genet.,
2007
Jan
, 71 (8-17).
859
Huang X
et al.
[Expression and function of voltage-gated Na+ channel isoforms in rat sinoatrial node]
Nan Fang Yi Ke Da Xue Xue Bao,
2007
Jan
, 27 (52-5).
860
Pfahnl AE
et al.
A sodium channel pore mutation causing Brugada syndrome.
Heart Rhythm,
2007
Jan
, 4 (46-53).
861
Chen LY
et al.
A common polymorphism in SCN5A is associated with lone atrial fibrillation.
Clin. Pharmacol. Ther.,
2007
Jan
, 81 (35-41).
862
Kinoshita E
et al.
A single nucleotide polymorphism genotyping method using phosphate-affinity polyacrylamide gel electrophoresis.
Anal. Biochem.,
2007
Feb
15
, 361 (294-8).
863
Harrell MD
et al.
Large-scale analysis of ion channel gene expression in the mouse heart during perinatal development.
Physiol. Genomics,
2007
Feb
12
, 28 (273-83).
866
Priest BT
et al.
ProTx-I and ProTx-II: gating modifiers of voltage-gated sodium channels.
Toxicon,
2007
Feb
, 49 (194-201).
867
Strege PR
et al.
Species dependent expression of intestinal smooth muscle mechanosensitive sodium channels.
Neurogastroenterol. Motil.,
2007
Feb
, 19 (135-43).
868
Chevalier P
et al.
Torsades de pointes complicating atrioventricular block: evidence for a genetic predisposition.
,
2007
Feb
, 4 (170-4).
869
Cronk LB
et al.
Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3.
Heart Rhythm,
2007
Feb
, 4 (161-6).
870
Williams BS
et al.
Characterization of a new class of potent inhibitors of the voltage-gated sodium channel Nav1.7.
Biochemistry,
2007
Dec
18
, 46 (14693-703).
871
Abriel H
Roles and regulation of the cardiac sodium channel Na v 1.5: recent insights from experimental studies.
Cardiovasc. Res.,
2007
Dec
1
, 76 (381-9).
872
Casini S
et al.
Characterization of a novel SCN5A mutation associated with Brugada syndrome reveals involvement of DIIIS4-S5 linker in slow inactivation.
Cardiovasc. Res.,
2007
Dec
1
, 76 (418-29).
873
Tan BH
et al.
A novel C-terminal truncation SCN5A mutation from a patient with sick sinus syndrome, conduction disorder and ventricular tachycardia.
Cardiovasc. Res.,
2007
Dec
1
, 76 (409-17).
874
Chancey JH
et al.
Relative resistance to slow inactivation of human cardiac Na+ channel hNav1.5 is reversed by lysine or glutamine substitution at V930 in D2-S6.
Am. J. Physiol., Cell Physiol.,
2007
Dec
, 293 (C1895-905).
875
Zaragoza MV
et al.
Noncompaction of the left ventricle: primary cardiomyopathy with an elusive genetic etiology.
Curr. Opin. Pediatr.,
2007
Dec
, 19 (619-27).
876
Gongadze N
et al.
Prolong QT interval and "torsades de pointes" associated with different group of drugs.
Georgian Med News,
2007
Dec
, (45-9).
877
Tian L
et al.
[Gene (SCN5A) mutation analysis of a Chinese family with Brugada syndrome]
Zhonghua Xin Xue Guan Bing Za Zhi,
2007
Dec
, 35 (1122-5).
878
Yokokawa M
et al.
Comparison of long-term follow-up of electrocardiographic features in Brugada syndrome between the SCN5A-positive probands and the SCN5A-negative probands.
Am. J. Cardiol.,
2007
Aug
15
, 100 (649-55).
879
Morris CE
et al.
Nav channel mechanosensitivity: activation and inactivation accelerate reversibly with stretch.
Biophys. J.,
2007
Aug
1
, 93 (822-33).
880
Hesse M
et al.
Dilated cardiomyopathy is associated with reduced expression of the cardiac sodium channel Scn5a.
Cardiovasc. Res.,
2007
Aug
1
, 75 (498-509).
881
Hu D
et al.
Novel mutation in the SCN5A gene associated with arrhythmic storm development during acute myocardial infarction.
,
2007
Aug
, 4 (1072-80).
882
Zhang T
et al.
Cardiac-specific overexpression of SCN5A gene leads to shorter P wave duration and PR interval in transgenic mice.
Biochem. Biophys. Res. Commun.,
2007
Apr
6
, 355 (444-50).
883
Shuraih M
et al.
A common SCN5A variant alters the responsiveness of human sodium channels to class I antiarrhythmic agents.
J. Cardiovasc. Electrophysiol.,
2007
Apr
, 18 (434-40).
884
Makita N
et al.
Novel SCN5A mutation (Q55X) associated with age-dependent expression of Brugada syndrome presenting as neurally mediated syncope.
,
2007
Apr
, 4 (516-9).
885
Bokeria LA
et al.
[The clinical variability of and approaches to treatment of life-threatening ventricular arrhythmias caused by SCN5A gene mutations]
Vestn. Akad. Med. Nauk SSSR,
2007
, (3-11).
886
Chopra SS
et al.
Molecular cloning and analysis of zebrafish voltage-gated sodium channel beta subunit genes: implications for the evolution of electrical signaling in vertebrates.
BMC Evol. Biol.,
2007
, 7 (113).
887
Alonso-Atienza F
et al.
Action potential alternans in LQT3 syndrome: a simulation study.
,
2007
, 2007 (640-3).
888
Bankston JR
et al.
A novel and lethal de novo LQT-3 mutation in a newborn with distinct molecular pharmacology and therapeutic response.
PLoS ONE,
2007
, 2 (e1258).
889
Herbert E
et al.
Clinical aspects and physiopathology of Brugada syndrome: review of current concepts.
Can. J. Physiol. Pharmacol.,
2006 Aug-Sep
, 84 (795-802).
890
Johnson D
et al.
Isoform-specific effects of the beta2 subunit on voltage-gated sodium channel gating.
J. Biol. Chem.,
2006
Sep
8
, 281 (25875-81).
891
Brette F
et al.
Density and sub-cellular distribution of cardiac and neuronal sodium channel isoforms in rat ventricular myocytes.
Biochem. Biophys. Res. Commun.,
2006
Sep
29
, 348 (1163-6).
892
Mathie A
et al.
Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability.
Pharmacol. Ther.,
2006
Sep
, 111 (567-83).
893
Millat G
et al.
Spectrum of pathogenic mutations and associated polymorphisms in a cohort of 44 unrelated patients with long QT syndrome.
Clin. Genet.,
2006
Sep
, 70 (214-27).
894
Tan BH
et al.
Partial expression defect for the SCN5A missense mutation G1406R depends on splice variant background Q1077 and rescue by mexiletine.
Am. J. Physiol. Heart Circ. Physiol.,
2006
Oct
, 291 (H1822-8).
895
Niu DM
et al.
A common SCN5A polymorphism attenuates a severe cardiac phenotype caused by a nonsense SCN5A mutation in a Chinese family with an inherited cardiac conduction defect.
J. Med. Genet.,
2006
Oct
, 43 (817-21).
896
Cordeiro JM
et al.
Compound heterozygous mutations P336L and I1660V in the human cardiac sodium channel associated with the Brugada syndrome.
Circulation,
2006
Nov
7
, 114 (2026-33).
897
Vatta M
et al.
Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome.
Circulation,
2006
Nov
14
, 114 (2104-12).
898
McNulty MM
et al.
An inner pore residue (Asn406) in the Nav1.5 channel controls slow inactivation and enhances mibefradil block to T-type Ca2+ channel levels.
Mol. Pharmacol.,
2006
Nov
, 70 (1514-23).
899
Iwasaki YK
et al.
A method for the simultaneous analysis of mRNA levels of multiple cardiac ion channels with a multi-probe RNase protection assay.
,
2006
Nov
, 8 (1011-5).
900
Wallace CH
et al.
Inhibition of cardiac voltage-gated sodium channels by grape polyphenols.
Br. J. Pharmacol.,
2006
Nov
, 149 (657-65).
901
Liu K
et al.
Recombinase-mediated cassette exchange to rapidly and efficiently generate mice with human cardiac sodium channels.
Genesis,
2006
Nov
, 44 (556-64).
902
Rajamani S
et al.
Drug-induced long QT syndrome: hERG K+ channel block and disruption of protein trafficking by fluoxetine and norfluoxetine.
Br. J. Pharmacol.,
2006
Nov
, 149 (481-9).
903
Wu WK
et al.
Involvement of Kv1.1 and Nav1.5 in proliferation of gastric epithelial cells.
J. Cell. Physiol.,
2006
May
, 207 (437-44).
904
Laitinen-Forsblom PJ
et al.
SCN5A mutation associated with cardiac conduction defect and atrial arrhythmias.
J. Cardiovasc. Electrophysiol.,
2006
May
, 17 (480-5).
905
Makielski JC
et al.
Na(+) current in human ventricle: implications for sodium loading and homeostasis.
J. Cardiovasc. Electrophysiol.,
2006
May
, 17 Suppl 1 (S15-S20).
906
Brette F
et al.
No apparent requirement for neuronal sodium channels in excitation-contraction coupling in rat ventricular myocytes.
Circ. Res.,
2006
Mar
17
, 98 (667-74).
907
Huang H
et al.
Nav1.5/R1193Q polymorphism is associated with both long QT and Brugada syndromes.
,
2006
Mar
15
, 22 (309-13).
908
Wang GK
et al.
Time-dependent block and resurgent tail currents induced by mouse beta4(154-167) peptide in cardiac Na+ channels.
J. Gen. Physiol.,
2006
Mar
, 127 (277-89).
909
Modell SM
et al.
The long QT syndrome family of cardiac ion channelopathies: a HuGE review.
Genet. Med.,
2006
Mar
, 8 (143-55).
910
Vecchietti S
et al.
Computer simulation of wild-type and mutant human cardiac Na+ current.
,
2006
Mar
, 44 (35-44).
911
Probst V
et al.
Progressive cardiac conduction defect is the prevailing phenotype in carriers of a Brugada syndrome SCN5A mutation.
J. Cardiovasc. Electrophysiol.,
2006
Mar
, 17 (270-5).
912
O'Reilly JP
et al.
Slow-inactivation induced conformational change in domain 2-segment 6 of cardiac Na+ channel.
Biochem. Biophys. Res. Commun.,
2006
Jun
23
, 345 (59-66).
913
Allouis M
et al.
14-3-3 is a regulator of the cardiac voltage-gated sodium channel Nav1.5.
Circ. Res.,
2006
Jun
23
, 98 (1538-46).
914
Keller DI
et al.
A novel SCN5A mutation, F1344S, identified in a patient with Brugada syndrome and fever-induced ventricular fibrillation.
Cardiovasc. Res.,
2006
Jun
1
, 70 (521-9).
915
Membrez M
et al.
GLUT8 is dispensable for embryonic development but influences hippocampal neurogenesis and heart function.
Mol. Cell. Biol.,
2006
Jun
, 26 (4268-76).
916
Hofman-Bang J
et al.
High-efficiency multiplex capillary electrophoresis single strand conformation polymorphism (multi-CE-SSCP) mutation screening of SCN5A: a rapid genetic approach to cardiac arrhythmia.
Clin. Genet.,
2006
Jun
, 69 (504-11).
917
Stecker EC
et al.
Allelic variants of SCN5A and risk of sudden cardiac arrest in patients with coronary artery disease.
,
2006
Jun
, 3 (697-700).
918
Locke GR
et al.
Gastrointestinal symptoms in families of patients with an SCN5A-encoded cardiac channelopathy: evidence of an intestinal channelopathy.
Am. J. Gastroenterol.,
2006
Jun
, 101 (1299-304).
919
Liu WL
et al.
[Novel mutations of potassium channel KCNQ1 S145L and KCNH2 Y475C genes in Chinese pedigrees of long QT syndrome]
Zhonghua Nei Ke Za Zhi,
2006
Jun
, 45 (463-6).
920
Cunha SR
et al.
Cardiac ankyrins: Essential components for development and maintenance of excitable membrane domains in heart.
Cardiovasc. Res.,
2006
Jul
1
, 71 (22-9).
921
Leipold E
et al.
Subtype specificity of scorpion beta-toxin Tz1 interaction with voltage-gated sodium channels is determined by the pore loop of domain 3.
Mol. Pharmacol.,
2006
Jul
, 70 (340-7).
922
Liang P
et al.
[Novel SCN5A gene mutations associated with Brugada syndrome: V95I, A1649V and delF1617]
,
2006
Jul
, 34 (616-9).
923
Scornik FS
et al.
Functional expression of "cardiac-type" Nav1.5 sodium channel in canine intracardiac ganglia.
Heart Rhythm,
2006
Jul
, 3 (842-50).
924
Tester DJ
et al.
Allelic dropout in long QT syndrome genetic testing: a possible mechanism underlying false-negative results.
Heart Rhythm,
2006
Jul
, 3 (815-21).
925
Tester DJ
et al.
Genotypic heterogeneity and phenotypic mimicry among unrelated patients referred for catecholaminergic polymorphic ventricular tachycardia genetic testing.
Heart Rhythm,
2006
Jul
, 3 (800-5).
926
Bezzina CR
et al.
Common sodium channel promoter haplotype in asian subjects underlies variability in cardiac conduction.
Circulation,
2006
Jan
24
, 113 (338-44).
927
Berecki G
et al.
Long-QT syndrome-related sodium channel mutations probed by the dynamic action potential clamp technique.
J. Physiol. (Lond.),
2006
Jan
15
, 570 (237-50).
928
Maltsev VA
et al.
A multi-modal composition of the late Na+ current in human ventricular cardiomyocytes.
Cardiovasc. Res.,
2006
Jan
, 69 (116-27).
929
Furuzono S
et al.
Inherent pacemaker function of duodenal GIST.
Eur. J. Cancer,
2006
Jan
, 42 (243-8).
930
Probst V
et al.
Monomorphic ventricular tachycardia due to Brugada syndrome successfully treated by hydroquinidine therapy in a 3-year-old child.
J. Cardiovasc. Electrophysiol.,
2006
Jan
, 17 (97-100).
931
Möller C
et al.
Effects of estradiol on cardiac ion channel currents.
Eur. J. Pharmacol.,
2006
Feb
17
, 532 (44-9).
932
Xiao YF
et al.
Potent block of inactivation-deficient Na+ channels by n-3 polyunsaturated fatty acids.
Am. J. Physiol., Cell Physiol.,
2006
Feb
, 290 (C362-70).
933
De Bruin ML
et al.
Pharmacogenetics of drug-induced arrhythmias: a feasibility study using spontaneous adverse drug reactions reporting data.
,
2006
Feb
, 15 (99-105).
934
Rosati B
et al.
Regional variation in mRNA transcript abundance within the ventricular wall.
J. Mol. Cell. Cardiol.,
2006
Feb
, 40 (295-302).
935
Iraqi M
et al.
[Long QT syndrome in children: analysis of the Lyon series]
Arch Mal Coeur Vaiss,
2006
Feb
, 99 (134-40).
936
Novotný T
et al.
[Mutational analysis of LQT genes in individuals with drug induced QT interval prolongation]
,
2006
Feb
, 52 (116-8).
937
Rudy Y
et al.
Computational biology in the study of cardiac ion channels and cell electrophysiology.
Q. Rev. Biophys.,
2006
Feb
, 39 (57-116).
938
Plant LD
et al.
A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y.
J. Clin. Invest.,
2006
Feb
, 116 (430-5).
939
Makielski JC
SIDS: genetic and environmental influences may cause arrhythmia in this silent killer.
J. Clin. Invest.,
2006
Feb
, 116 (297-9).
940
Remme CA
et al.
Overlap syndrome of cardiac sodium channel disease in mice carrying the equivalent mutation of human SCN5A-1795insD.
Circulation,
2006
Dec
12
, 114 (2584-94).
941
Flaim SN
et al.
Contributions of sustained INa and IKv43 to transmural heterogeneity of early repolarization and arrhythmogenesis in canine left ventricular myocytes.
Am. J. Physiol. Heart Circ. Physiol.,
2006
Dec
, 291 (H2617-29).
942
Shin WH
et al.
Electrophysiological effects of brompheniramine on cardiac ion channels and action potential.
Pharmacol. Res.,
2006
Dec
, 54 (414-20).
943
Mank-Seymour AR
et al.
Association of torsades de pointes with novel and known single nucleotide polymorphisms in long QT syndrome genes.
Am. Heart J.,
2006
Dec
, 152 (1116-22).
944
Glaaser IW
et al.
A carboxyl-terminal hydrophobic interface is critical to sodium channel function. Relevance to inherited disorders.
J. Biol. Chem.,
2006
Aug
18
, 281 (24015-23).
945
Gavillet B
et al.
Cardiac sodium channel Nav1.5 is regulated by a multiprotein complex composed of syntrophins and dystrophin.
Circ. Res.,
2006
Aug
18
, 99 (407-14).
946
Poelzing S
et al.
SCN5A polymorphism restores trafficking of a Brugada syndrome mutation on a separate gene.
Circulation,
2006
Aug
1
, 114 (368-76).
947
Meregalli PG
et al.
Diagnostic value of flecainide testing in unmasking SCN5A-related Brugada syndrome.
J. Cardiovasc. Electrophysiol.,
2006
Aug
, 17 (857-64).
948
Stöllberger C
et al.
QT prolongation due to aortic aneurysm rupture and amiodarone in a patient with a H558R polymorphism in the cardiac sodium channel gene SCN5A.
,
2006
Aug
, 54 (503-6).
949
Camacho JA
et al.
Modulation of Nav1.5 channel function by an alternatively spliced sequence in the DII/DIII linker region.
J. Biol. Chem.,
2006
Apr
7
, 281 (9498-506).
950
Etzrodt D
et al.
Letter regarding article by Burke et al, "role of SCN5A Y1102 polymorphism in sudden cardiac death in blacks".
Circulation,
2006
Apr
18
, 113 (e709; author reply e709).
951
Wolf CM
et al.
Inherited conduction system abnormalities--one group of diseases, many genes.
J. Cardiovasc. Electrophysiol.,
2006
Apr
, 17 (446-55).
952
Roberts E
GABAergic malfunction in the limbic system resulting from an aboriginal genetic defect in voltage-gated Na+-channel SCN5A is proposed to give rise to susceptibility to schizophrenia.
Adv. Pharmacol.,
2006
, 54 (119-45).
953
Viswanathan PC
et al.
Molecular basis of isolated cardiac conduction disease.
Handb Exp Pharmacol,
2006
, (331-47).
954
Teener JW
et al.
Dysregulation of sodium channel gating in critical illness myopathy.
J. Muscle Res. Cell. Motil.,
2006
, 27 (291-6).
955
Isbilen B
et al.
Docosahexaenoic acid (omega-3) blocks voltage-gated sodium channel activity and migration of MDA-MB-231 human breast cancer cells.
Int. J. Biochem. Cell Biol.,
2006
, 38 (2173-82).
957
Dice MS
et al.
Methods for studying voltage-gated sodium channels in heterologous expression systems.
Methods Mol. Med.,
2006
, 129 (163-85).
958
Dichgans M
et al.
Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine.
Lancet,
2005 Jul 30-Aug 5
, 366 (371-7).
959
Shim SH
et al.
Gene sequencing in neonates and infants with the long QT syndrome.
Genet. Test.,
2005
Winter
, 9 (281-4).
960
van Veen TA
et al.
Impaired impulse propagation in Scn5a-knockout mice: combined contribution of excitability, connexin expression, and tissue architecture in relation to aging.
Circulation,
2005
Sep
27
, 112 (1927-35).
961
Darbar D
et al.
Unmasking of brugada syndrome by lithium.
Circulation,
2005
Sep
13
, 112 (1527-31).
962
Lei M
et al.
Sinus node dysfunction following targeted disruption of the murine cardiac sodium channel gene Scn5a.
J. Physiol. (Lond.),
2005
Sep
1
, 567 (387-400).
963
Grant AO
Electrophysiological basis and genetics of Brugada syndrome.
J. Cardiovasc. Electrophysiol.,
2005
Sep
, 16 Suppl 1 (S3-7).
964
Sarkozy A
et al.
Sudden cardiac death and inherited arrhythmia syndromes.
J. Cardiovasc. Electrophysiol.,
2005
Sep
, 16 Suppl 1 (S8-20).
965
Keller DI
et al.
A novel nonsense mutation in the SCN5A gene leads to Brugada syndrome and a silent gene mutation carrier state.
,
2005
Sep
, 21 (925-31).
966
Edrich T
et al.
State-dependent block of human cardiac hNav1.5 sodium channels by propafenone.
J. Membr. Biol.,
2005
Sep
, 207 (35-43).
967
Berge KE
et al.
[DNA-based diagnostics of long QT syndrome]
Tidsskr. Nor. Laegeforen.,
2005
Oct
20
, 125 (2783-6).
968
Makita N
et al.
Congenital atrial standstill associated with coinheritance of a novel SCN5A mutation and connexin 40 polymorphisms.
,
2005
Oct
, 2 (1128-34).
969
Wilde AA
et al.
Ten years of genes in inherited arrhythmia syndromes: an example of what we have learned from patients, electrocardiograms, and computers.
,
2005
Oct
, 38 (145-9).
970
Ye X
et al.
Structural basis for the voltage-gated Na+ channel selectivity of the scorpion alpha-like toxin BmK M1.
J. Mol. Biol.,
2005
Nov
4
, 353 (788-803).
971
Liu K
et al.
New mechanism contributing to drug-induced arrhythmia: rescue of a misprocessed LQT3 mutant.
Circulation,
2005
Nov
22
, 112 (3239-46).
972
Gouas L
et al.
Association of KCNQ1, KCNE1, KCNH2 and SCN5A polymorphisms with QTc interval length in a healthy population.
Eur. J. Hum. Genet.,
2005
Nov
, 13 (1213-22).
973
Ahern CA
et al.
Modulation of the cardiac sodium channel NaV1.5 by Fyn, a Src family tyrosine kinase.
Circ. Res.,
2005
May
13
, 96 (991-8).
974
Todd SJ
et al.
Novel Brugada SCN5A mutation causing sudden death in children.
,
2005
May
, 2 (540-3).
975
Skinner JR
et al.
Near-miss SIDS due to Brugada syndrome.
Arch. Dis. Child.,
2005
May
, 90 (528-9).
976
Tester DJ
et al.
Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing.
,
2005
May
, 2 (507-17).
977
Miyoshi S
et al.
Link between SCN5A mutation and the Brugada syndrome ECG phenotype: simulation study.
Circ. J.,
2005
May
, 69 (567-75).
978
Mohler PJ
et al.
Ankyrin-based cardiac arrhythmias: a new class of channelopathies due to loss of cellular targeting.
Curr. Opin. Cardiol.,
2005
May
, 20 (189-93).
979
Rossenbacker T
et al.
Unconventional intronic splice site mutation in SCN5A associates with cardiac sodium channelopathy.
J. Med. Genet.,
2005
May
, 42 (e29).
980
Itoh H
et al.
A novel missense mutation in the SCN5A gene associated with Brugada syndrome bidirectionally affecting blocking actions of antiarrhythmic drugs.
J. Cardiovasc. Electrophysiol.,
2005
May
, 16 (486-93).
981
Persson F
et al.
Blocking characteristics of hERG, hNav1.5, and hKvLQT1/hminK after administration of the novel anti-arrhythmic compound AZD7009.
J. Cardiovasc. Electrophysiol.,
2005
Mar
, 16 (329-41).
982
Newton-Cheh C
et al.
QT interval is a heritable quantitative trait with evidence of linkage to chromosome 3 in a genome-wide linkage analysis: The Framingham Heart Study.
,
2005
Mar
, 2 (277-84).
983
Yokoi H
et al.
Double SCN5A mutation underlying asymptomatic Brugada syndrome.
,
2005
Mar
, 2 (285-92).
984
Auerbach H
et al.
[Brugada syndrome, a rare cause of syncope]
Med. Klin. (Munich),
2005
Jun
15
, 100 (361-4).
985
Young KA
et al.
Modulation of skeletal and cardiac voltage-gated sodium channels by calmodulin.
J. Physiol. (Lond.),
2005
Jun
1
, 565 (349-70).
986
Chen T
et al.
Reduced voltage dependence of inactivation in the SCN5A sodium channel mutation delF1617.
Am. J. Physiol. Heart Circ. Physiol.,
2005
Jun
, 288 (H2666-76).
987
Wang SY
et al.
Tryptophan substitution of a putative D4S6 gating hinge alters slow inactivation in cardiac sodium channels.
Biophys. J.,
2005
Jun
, 88 (3991-9).
988
Du R
et al.
[Relationship between congenital long QT syndrome and Brugada syndrome gene mutation]
Zhongguo Yi Xue Ke Xue Yuan Xue Bao,
2005
Jun
, 27 (289-94).
989
Smits JP
et al.
A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families.
J. Mol. Cell. Cardiol.,
2005
Jun
, 38 (969-81).
990
Groenewegen WA
et al.
Letter regarding article by McNair et al, "SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia".
Circulation,
2005
Jul
5
, 112 (e9; author reply e9-10).
991
Beaufort-Krol GC
et al.
Developmental aspects of long QT syndrome type 3 and Brugada syndrome on the basis of a single SCN5A mutation in childhood.
J. Am. Coll. Cardiol.,
2005
Jul
19
, 46 (331-7).
992
Persson F
et al.
Blocking characteristics of hKv1.5 and hKv4.3/hKChIP2.2 after administration of the novel antiarrhythmic compound AZD7009.
J. Cardiovasc. Pharmacol.,
2005
Jul
, 46 (7-17).
993
Maekawa K
et al.
Genetic polymorphisms and haplotypes of the human cardiac sodium channel alpha subunit gene (SCN5A) in Japanese and their association with arrhythmia.
Ann. Hum. Genet.,
2005
Jul
, 69 (413-28).
994
Tan BH
et al.
Common human SCN5A polymorphisms have altered electrophysiology when expressed in Q1077 splice variants.
Heart Rhythm,
2005
Jul
, 2 (741-7).
995
Adler E
et al.
SCN5A--a mechanistic link between inherited cardiomyopathies and a predisposition to arrhythmias?
JAMA,
2005
Jan
26
, 293 (491-3).
996
Olson TM
et al.
Sodium channel mutations and susceptibility to heart failure and atrial fibrillation.
JAMA,
2005
Jan
26
, 293 (447-54).
997
Shang LL
et al.
Tandem promoters and developmentally regulated 5'- and 3'-mRNA untranslated regions of the mouse Scn5a cardiac sodium channel.
J. Biol. Chem.,
2005
Jan
14
, 280 (933-40).
998
Abriel H
et al.
Regulation of the voltage-gated cardiac sodium channel Nav1.5 by interacting proteins.
Trends Cardiovasc. Med.,
2005
Jan
, 15 (35-40).
999
Viswanathan PC
SCN5A-linked disease syndromes: complex monogenic disorders of cardiac rhythm.
Future Cardiol,
2005
Jan
, 1 (29-38).
1000
Ajiro Y
et al.
Assessment of markers for identifying patients at risk for life-threatening arrhythmic events in Brugada syndrome.
J. Cardiovasc. Electrophysiol.,
2005
Jan
, 16 (45-51).
1001
Hwang HW
et al.
R1193Q of SCN5A, a Brugada and long QT mutation, is a common polymorphism in Han Chinese.
J. Med. Genet.,
2005
Feb
, 42 (e7; author reply e8).
1002
Aydin A
et al.
Single nucleotide polymorphism map of five long-QT genes.
J. Mol. Med.,
2005
Feb
, 83 (159-65).
1003
Makiyama T
et al.
High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations.
J. Am. Coll. Cardiol.,
2005
Dec
6
, 46 (2100-6).
1004
Napolitano C
et al.
Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice.
JAMA,
2005
Dec
21
, 294 (2975-80).
1005
Saffitz JE
Structural heart disease, SCN5A gene mutations, and Brugada syndrome: a complex ménage à trois.
Circulation,
2005
Dec
13
, 112 (3672-4).
1006
Frustaci A
et al.
Cardiac histological substrate in patients with clinical phenotype of Brugada syndrome.
Circulation,
2005
Dec
13
, 112 (3680-7).
1007
Verkerk AO
et al.
Role of sequence variations in the human ether-a-go-go-related gene (HERG, KCNH2) in the Brugada syndrome.
Cardiovasc. Res.,
2005
Dec
1
, 68 (441-53).
1008
Arbustini E
et al.
Gene symbol: SCN5A. Disease: Brugada syndrome.
Hum. Genet.,
2005
Dec
, 118 (536).
1009
Head CE
et al.
Paced electrogram fractionation analysis of arrhythmogenic tendency in DeltaKPQ Scn5a mice.
J. Cardiovasc. Electrophysiol.,
2005
Dec
, 16 (1329-40).
1010
Amin AS
et al.
Novel Brugada syndrome-causing mutation in ion-conducting pore of cardiac Na+ channel does not affect ion selectivity properties.
Acta Physiol. Scand.,
2005
Dec
, 185 (291-301).
1011
Burke A
et al.
Role of SCN5A Y1102 polymorphism in sudden cardiac death in blacks.
Circulation,
2005
Aug
9
, 112 (798-802).
1012
Keller DI
et al.
Brugada syndrome and fever: genetic and molecular characterization of patients carrying SCN5A mutations.
Cardiovasc. Res.,
2005
Aug
15
, 67 (510-9).
1013
Meregalli PG
et al.
Pathophysiological mechanisms of Brugada syndrome: depolarization disorder, repolarization disorder, or more?
Cardiovasc. Res.,
2005
Aug
15
, 67 (367-78).
1014
Tester DJ
et al.
Sudden infant death syndrome: how significant are the cardiac channelopathies?
Cardiovasc. Res.,
2005
Aug
15
, 67 (388-96).
1015
Smits JP
et al.
Substitution of a conserved alanine in the domain IIIS4-S5 linker of the cardiac sodium channel causes long QT syndrome.
Cardiovasc. Res.,
2005
Aug
15
, 67 (459-66).
1016
Strege PR
et al.
Effect of mibefradil on sodium and calcium currents.
Am. J. Physiol. Gastrointest. Liver Physiol.,
2005
Aug
, 289 (G249-53).
1017
Szabó G
et al.
Asymmetrical distribution of ion channels in canine and human left-ventricular wall: epicardium versus midmyocardium.
Pflugers Arch.,
2005
Aug
, 450 (307-16).
1018
Ou SW
et al.
Tetrodotoxin-resistant Na+ channels in human neuroblastoma cells are encoded by new variants of Nav1.5/SCN5A.
Eur. J. Neurosci.,
2005
Aug
, 22 (793-801).
1019
Shimizu W
et al.
Mechanisms of disease: current understanding and future challenges in Brugada syndrome.
,
2005
Aug
, 2 (408-14).
1020
Wang SY
et al.
Block of inactivation-deficient cardiac Na(+) channels by acetyl-KIFMK-amide.
Biochem. Biophys. Res. Commun.,
2005
Apr
8
, 329 (780-8).
1021
Royer A
et al.
Mouse model of SCN5A-linked hereditary Lenègre's disease: age-related conduction slowing and myocardial fibrosis.
Circulation,
2005
Apr
12
, 111 (1738-46).
1022
Makielski JC
et al.
Arrhythmia mutations in non-coding region of SCN5A: implications for genetic screening.
J. Mol. Cell. Cardiol.,
2005
Apr
, 38 (551-3).
1023
Liu LH
et al.
Molecular basis of the mammalian potency of the scorpion alpha-like toxin, BmK M1.
FASEB J.,
2005
Apr
, 19 (594-6).
1024
Itoh H
et al.
Clinical and electrophysiological characteristics of Brugada syndrome caused by a missense mutation in the S5-pore site of SCN5A.
J. Cardiovasc. Electrophysiol.,
2005
Apr
, 16 (378-83).
1025
Hong K
et al.
Cryptic 5' splice site activation in SCN5A associated with Brugada syndrome.
J. Mol. Cell. Cardiol.,
2005
Apr
, 38 (555-60).
1026
1027
Chatrath R
et al.
Beta-blocker therapy failures in symptomatic probands with genotyped long-QT syndrome.
Pediatr Cardiol,
2004 Sep-Oct
, 25 (459-65).
1028
Chen J
et al.
Single-nucleotide polymorphisms in SCN5A gene in Chinese Han population and their correlation with cardiac arrhythmias.
Genet. Med.,
2004 May-Jun
, 6 (159).
1029
Malhotra JD
et al.
Tyrosine-phosphorylated and nonphosphorylated sodium channel beta1 subunits are differentially localized in cardiac myocytes.
J. Biol. Chem.,
2004
Sep
24
, 279 (40748-54).
1030
Filatov GN
et al.
Hyperpolarized shifts in the voltage dependence of fast inactivation of Nav1.4 and Nav1.5 in a rat model of critical illness myopathy.
J. Physiol. (Lond.),
2004
Sep
15
, 559 (813-20).
1031
Lei M
et al.
Requirement of neuronal- and cardiac-type sodium channels for murine sinoatrial node pacemaking.
J. Physiol. (Lond.),
2004
Sep
15
, 559 (835-48).
1032
Satin J
et al.
Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes.
J. Physiol. (Lond.),
2004
Sep
1
, 559 (479-96).
1033
Alvarez JL
et al.
Occurrence of a tetrodotoxin-sensitive calcium current in rat ventricular myocytes after long-term myocardial infarction.
Cardiovasc. Res.,
2004
Sep
1
, 63 (653-61).
1034
Marini M
et al.
[Atrial standstill: a paralysis of cardiological relevance]
,
2004
Sep
, 5 (681-6).
1035
Kim J
et al.
Calmodulin mediates Ca2+ sensitivity of sodium channels.
J. Biol. Chem.,
2004
Oct
22
, 279 (45004-12).
1036
Choi G
et al.
Spectrum and frequency of cardiac channel defects in swimming-triggered arrhythmia syndromes.
Circulation,
2004
Oct
12
, 110 (2119-24).
1037
McNair WP
et al.
SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia.
Circulation,
2004
Oct
12
, 110 (2163-7).
1038
Ramos E
et al.
State-dependent trapping of flecainide in the cardiac sodium channel.
J. Physiol. (Lond.),
2004
Oct
1
, 560 (37-49).
1039
Hong K
et al.
Value of electrocardiographic parameters and ajmaline test in the diagnosis of Brugada syndrome caused by SCN5A mutations.
Circulation,
2004
Nov
9
, 110 (3023-7).
1040
Le Bouter S
et al.
Long-term amiodarone administration remodels expression of ion channel transcripts in the mouse heart.
Circulation,
2004
Nov
9
, 110 (3028-35).
1041
Zehelein J
et al.
Identification and characterisation of a novel KCNQ1 mutation in a family with Romano-Ward syndrome.
Biochim. Biophys. Acta,
2004
Nov
5
, 1690 (185-92).
1042
Chang CC
et al.
A novel SCN5A mutation manifests as a malignant form of long QT syndrome with perinatal onset of tachycardia/bradycardia.
Cardiovasc. Res.,
2004
Nov
1
, 64 (268-78).
1043
Rossenbacker T
et al.
Novel pore mutation in SCN5A manifests as a spectrum of phenotypes ranging from atrial flutter, conduction disease, and Brugada syndrome to sudden cardiac death.
,
2004
Nov
, 1 (610-5).
1044
Ackerman MJ
et al.
Spectrum and prevalence of cardiac sodium channel variants among black, white, Asian, and Hispanic individuals: implications for arrhythmogenic susceptibility and Brugada/long QT syndrome genetic testing.
Heart Rhythm,
2004
Nov
, 1 (600-7).
1045
Chugh SS
et al.
Postmortem molecular screening in unexplained sudden death.
J. Am. Coll. Cardiol.,
2004
May
5
, 43 (1625-9).
1046
Wang Q
et al.
The common SCN5A mutation R1193Q causes LQTS-type electrophysiological alterations of the cardiac sodium channel.
J. Med. Genet.,
2004
May
, 41 (e66).
1047
Chen JZ
et al.
Single nucleotide polymorphisms of the SCN5A gene in Han Chinese and their relation with Brugada syndrome.
Chin. Med. J.,
2004
May
, 117 (652-6).
1048
Lupoglazoff JM
et al.
Long QT syndrome in neonates: conduction disorders associated with HERG mutations and sinus bradycardia with KCNQ1 mutations.
J. Am. Coll. Cardiol.,
2004
Mar
3
, 43 (826-30).
1049
Baroudi G
et al.
Loss of function associated with novel mutations of the SCN5A gene in patients with Brugada syndrome.
,
2004
Mar
15
, 20 (425-30).
1050
Fahmi AI
et al.
Cortisol influences the ontogeny of both alpha- and beta-subunits of the cardiac sodium channel in fetal sheep.
J. Endocrinol.,
2004
Mar
, 180 (449-55).
1051
Paulussen AD
et al.
Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients.
J. Mol. Med.,
2004
Mar
, 82 (182-8).
1052
Kerr NC
et al.
Novel isoforms of the sodium channels Nav1.8 and Nav1.5 are produced by a conserved mechanism in mouse and rat.
J. Biol. Chem.,
2004
Jun
4
, 279 (24826-33).
1053
Ueda K
et al.
Functional characterization of a trafficking-defective HCN4 mutation, D553N, associated with cardiac arrhythmia.
J. Biol. Chem.,
2004
Jun
25
, 279 (27194-8).
1054
Miller TE
et al.
Recurrent third-trimester fetal loss and maternal mosaicism for long-QT syndrome.
Circulation,
2004
Jun
22
, 109 (3029-34).
1055
Anson BD
et al.
Molecular and functional characterization of common polymorphisms in HERG (KCNH2) potassium channels.
Am. J. Physiol. Heart Circ. Physiol.,
2004
Jun
, 286 (H2434-41).
1056
Lian JF
et al.
[Long QT syndrome gene diagnosis by haplotype analysis]
Zhonghua Yi Xue Yi Chuan Xue Za Zhi,
2004
Jun
, 21 (272-3).
1057
Sharma D
et al.
Characterization of a KCNQ1/KVLQT1 polymorphism in Asian families with LQT2: implications for genetic testing.
J. Mol. Cell. Cardiol.,
2004
Jul
, 37 (79-89).
1058
Khan IA
et al.
Brugada and long QT-3 syndromes: two phenotypes of the sodium channel disease.
Ann Noninvasive Electrocardiol,
2004
Jul
, 9 (280-9).
1059
Yang P
et al.
Cloning and initial characterization of the human cardiac sodium channel (SCN5A) promoter.
Cardiovasc. Res.,
2004
Jan
1
, 61 (56-65).
1060
Takehara N
et al.
A cardiac sodium channel mutation identified in Brugada syndrome associated with atrial standstill.
J. Intern. Med.,
2004
Jan
, 255 (137-42).
1061
Viswanathan PC
et al.
Inherited sodium channelopathies: a continuum of channel dysfunction.
Trends Cardiovasc. Med.,
2004
Jan
, 14 (28-35).
1062
Hong K
et al.
Phenotypic characterization of a large European family with Brugada syndrome displaying a sudden unexpected death syndrome mutation in SCN5A:.
J. Cardiovasc. Electrophysiol.,
2004
Jan
, 15 (64-9).
1063
Barbier J
et al.
A delta-conotoxin from Conus ermineus venom inhibits inactivation in vertebrate neuronal Na+ channels but not in skeletal and cardiac muscles.
J. Biol. Chem.,
2004
Feb
6
, 279 (4680-5).
1064
Xie XD
et al.
[Single nucleotide polymorphism in SCN5A and the distribution in Chinese Han ethnic group]
,
2004
Feb
25
, 56 (36-40).
1065
Tian XL
et al.
Mechanisms by which SCN5A mutation N1325S causes cardiac arrhythmias and sudden death in vivo.
Cardiovasc. Res.,
2004
Feb
1
, 61 (256-67).
1066
Herfst LJ
et al.
Trafficking and functional expression of cardiac Na+ channels.
J. Mol. Cell. Cardiol.,
2004
Feb
, 36 (185-93).
1067
Mok NS
et al.
Clinical profile and genetic basis of Brugada syndrome in the Chinese population.
,
2004
Feb
, 10 (32-7).
1068
Mohler PJ
et al.
Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes.
Proc. Natl. Acad. Sci. U.S.A.,
2004
Dec
14
, 101 (17533-8).
1069
McNulty MM
et al.
State-dependent mibefradil block of Na+ channels.
Mol. Pharmacol.,
2004
Dec
, 66 (1652-61).
1070
Van Bemmelen MX
et al.
Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination.
Circ. Res.,
2004
Aug
6
, 95 (284-91).
1071
Song Y
et al.
Antagonism by ranolazine of the pro-arrhythmic effects of increasing late INa in guinea pig ventricular myocytes.
J. Cardiovasc. Pharmacol.,
2004
Aug
, 44 (192-9).
1072
Niimura H
et al.
Genetic analysis of Brugada syndrome in Western Japan: two novel mutations.
Circ. J.,
2004
Aug
, 68 (740-6).
1073
Westenskow P
et al.
Compound mutations: a common cause of severe long-QT syndrome.
Circulation,
2004
Apr
20
, 109 (1834-41).
1074
Valdivia CR
et al.
A trafficking defective, Brugada syndrome-causing SCN5A mutation rescued by drugs.
Cardiovasc. Res.,
2004
Apr
1
, 62 (53-62).
1075
Lenkowski PW
et al.
Block of human NaV1.5 sodium channels by novel alpha-hydroxyphenylamide analogues of phenytoin.
,
2004
Apr
, 21 (635-44).
1076
Juang JM
et al.
Brugada syndrome--an under-recognized electrical disease in patients with sudden cardiac death.
Cardiology,
2004
, 101 (157-69).
1077
Charpentier F
et al.
Cardiac channelopathies: from men to mice.
Ann. Med.,
2004
, 36 Suppl 1 (28-34).
1078
Fodstad H
et al.
Four potassium channel mutations account for 73% of the genetic spectrum underlying long-QT syndrome (LQTS) and provide evidence for a strong founder effect in Finland.
Ann. Med.,
2004
, 36 Suppl 1 (53-63).
1079
Moric-Janiszewska E
et al.
Mutational screening of SCN5A linked disorders in Polish patients and their family members.
J. Appl. Genet.,
2004
, 45 (383-90).
1080
Shin DJ
et al.
Genetic analysis of the cardiac sodium channel gene SCN5A in Koreans with Brugada syndrome.
J. Hum. Genet.,
2004
, 49 (573-8).
1081
Miura M
et al.
Congenital long QT syndrome and 2:1 atrioventricular block with a mutation of the SCN5A gene.
Pediatr Cardiol,
2003 Jan-Feb
, 24 (70-2).
1082
Paulussen A
et al.
Mutation analysis in congenital Long QT Syndrome--a case with missense mutations in KCNQ1 and SCN5A.
Genet. Test.,
2003
Spring
, 7 (57-61).
1083
Makielski JC
et al.
A ubiquitous splice variant and a common polymorphism affect heterologous expression of recombinant human SCN5A heart sodium channels.
Circ. Res.,
2003
Oct
31
, 93 (821-8).
1084
Benson DW
et al.
Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A).
J. Clin. Invest.,
2003
Oct
, 112 (1019-28).
1085
Cruz SL
et al.
Inhibition of cardiac sodium currents by toluene exposure.
Br. J. Pharmacol.,
2003
Oct
, 140 (653-60).
1086
Moric E
et al.
The implications of genetic mutations in the sodium channel gene (SCN5A).
,
2003
Oct
, 5 (325-34).
1087
Yi SD
et al.
[PCR-based site-directed mutagenesis and recombinant expression plasmid construction of a SCN5A mutation (K317N) identified in a Chinese family with Brugada syndrome]
Di Yi Jun Yi Da Xue Xue Bao,
2003
Nov
, 23 (1139-42).
1088
Priori SG
et al.
Risk stratification in the long-QT syndrome.
N. Engl. J. Med.,
2003
May
8
, 348 (1866-74).
1089
Clancy CE
et al.
Non-equilibrium gating in cardiac Na+ channels: an original mechanism of arrhythmia.
Circulation,
2003
May
6
, 107 (2233-7).
1090
Wehrens XH
et al.
A novel mutation L619F in the cardiac Na+ channel SCN5A associated with long-QT syndrome (LQT3): a role for the I-II linker in inactivation gating.
Hum. Mutat.,
2003
May
, 21 (552).
1091
Herfst LJ
et al.
Na+ channel mutation leading to loss of function and non-progressive cardiac conduction defects.
J. Mol. Cell. Cardiol.,
2003
May
, 35 (549-57).
1092
Groenewegen WA
et al.
A novel LQT3 mutation implicates the human cardiac sodium channel domain IVS6 in inactivation kinetics.
Cardiovasc. Res.,
2003
Mar
15
, 57 (1072-8).
1093
Boehmer C
et al.
Serum and glucocorticoid inducible kinases in the regulation of the cardiac sodium channel SCN5A.
Cardiovasc. Res.,
2003
Mar
15
, 57 (1079-84).
1094
Fabritz L
et al.
Effect of pacing and mexiletine on dispersion of repolarisation and arrhythmias in DeltaKPQ SCN5A (long QT3) mice.
Cardiovasc. Res.,
2003
Mar
15
, 57 (1085-93).
1095
Sha Q
et al.
An antisense oligonucleotide against H1 inhibits the classical sodium current but not ICa(TTX) in rat ventricular cells.
J. Physiol. (Lond.),
2003
Mar
1
, 547 (435-40).
1096
Sun YM
et al.
Importance of the conserved aromatic residues in the scorpion alpha-like toxin BmK M1: the hydrophobic surface region revisited.
J. Biol. Chem.,
2003
Jun
27
, 278 (24125-31).
1097
Schulze-Bahr E
et al.
Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: different incidences in familial and sporadic disease.
Hum. Mutat.,
2003
Jun
, 21 (651-2).
1098
Zareba W
et al.
Modulating effects of age and gender on the clinical course of long QT syndrome by genotype.
J. Am. Coll. Cardiol.,
2003
Jul
2
, 42 (103-9).
1099
Tateyama M
et al.
Stimulation of protein kinase C inhibits bursting in disease-linked mutant human cardiac sodium channels.
Circulation,
2003
Jul
1
, 107 (3216-22).
1100
Ou Y
et al.
Syntrophin gamma 2 regulates SCN5A gating by a PDZ domain-mediated interaction.
J. Biol. Chem.,
2003
Jan
17
, 278 (1915-23).
1101
Liu CJ
et al.
Modulation of the cardiac sodium channel Nav1.5 by fibroblast growth factor homologous factor 1B.
J. Biol. Chem.,
2003
Jan
10
, 278 (1029-36).
1102
Groenewegen WA
et al.
A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill.
Circ. Res.,
2003
Jan
10
, 92 (14-22).
1103
Gasparini M
et al.
Flecainide test in Brugada syndrome: a reproducible but risky tool.
,
2003
Jan
, 26 (338-41).
1104
Bezzina CR
et al.
Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system.
Circ. Res.,
2003
Feb
7
, 92 (159-68).
1105
Ye B
et al.
A common human SCN5A polymorphism modifies expression of an arrhythmia causing mutation.
Physiol. Genomics,
2003
Feb
6
, 12 (187-93).
1106
Probst V
et al.
Haploinsufficiency in combination with aging causes SCN5A-linked hereditary Lenègre disease.
J. Am. Coll. Cardiol.,
2003
Feb
19
, 41 (643-52).
1107
Potet F
et al.
Novel brugada SCN5A mutation leading to ST segment elevation in the inferior or the right precordial leads.
J. Cardiovasc. Electrophysiol.,
2003
Feb
, 14 (200-3).
1108
Viswanathan PC
et al.
A common SCN5A polymorphism modulates the biophysical effects of an SCN5A mutation.
J. Clin. Invest.,
2003
Feb
, 111 (341-6).
1109
Ning L
et al.
Denaturing high-performance liquid chromatography quickly and reliably detects cardiac ion channel mutations in long QT syndrome.
Genet. Test.,
2003
Fall
, 7 (249-53).
1110
Strege PR
et al.
Sodium current in human intestinal interstitial cells of Cajal.
Am. J. Physiol. Gastrointest. Liver Physiol.,
2003
Dec
, 285 (G1111-21).
1111
O'Leary ME
et al.
Closing and inactivation potentiate the cocaethylene inhibition of cardiac sodium channels by distinct mechanisms.
Mol. Pharmacol.,
2003
Dec
, 64 (1575-85).
1112
Keller DI
et al.
A novel mutation in SCN5A, delQKP 1507-1509, causing long QT syndrome: role of Q1507 residue in sodium channel inactivation.
J. Mol. Cell. Cardiol.,
2003
Dec
, 35 (1513-21).
1113
Takahata T
et al.
Nucleotide changes in the translated region of SCN5A from Japanese patients with Brugada syndrome and control subjects.
Life Sci.,
2003
Apr
11
, 72 (2391-9).
1114
Napolitano C
et al.
Cardiac sodium channel diseases.
Clin. Chem. Lab. Med.,
2003
Apr
, 41 (439-44).
1115
Mok NS
et al.
A newly characterized SCN5A mutation underlying Brugada syndrome unmasked by hyperthermia.
J. Cardiovasc. Electrophysiol.,
2003
Apr
, 14 (407-11).
1116
Lang F
et al.
Regulation of channels by the serum and glucocorticoid-inducible kinase - implications for transport, excitability and cell proliferation.
Cell. Physiol. Biochem.,
2003
, 13 (41-50).
1117
Liu H
et al.
Mutations in cardiac sodium channels: clinical implications.
,
2003
, 3 (173-9).
1118
Fish JM
et al.
Cellular and ionic basis for the sex-related difference in the manifestation of the Brugada syndrome and progressive conduction disease phenotypes.
,
2003
, 36 Suppl (173-9).
1119
Dib-Hajj SD
et al.
Structure of the sodium channel gene SCN11A: evidence for intron-to-exon conversion model and implications for gene evolution.
Mol. Neurobiol.,
2002 Oct-Dec
, 26 (235-50).
1120
Makita N
et al.
Drug-induced long-QT syndrome associated with a subclinical SCN5A mutation.
Circulation,
2002
Sep
3
, 106 (1269-74).
1121
Rivolta I
et al.
A novel SCN5A mutation associated with long QT-3: altered inactivation kinetics and channel dysfunction.
Physiol. Genomics,
2002
Sep
3
, 10 (191-7).
1122
Wang GK
et al.
Modifications of human cardiac sodium channel gating by UVA light.
J. Membr. Biol.,
2002
Sep
15
, 189 (153-65).
1123
Sakabe M
et al.
[Brugada syndrome occurring in an identical twin: a case report]
,
2002
Sep
, 40 (111-5).
1124
Ou Y
et al.
SCN5A is expressed in human jejunal circular smooth muscle cells.
Neurogastroenterol. Motil.,
2002
Oct
, 14 (477-86).
1125
Clancy CE
et al.
Insights into the molecular mechanisms of bradycardia-triggered arrhythmias in long QT-3 syndrome.
J. Clin. Invest.,
2002
Nov
, 110 (1251-62).
1126
Lupoglazoff JM
et al.
[Homozygotous mutation of the SCN5A gene responsible for congenital long QT syndrome with 2/1 atrioventricular block]
Arch Mal Coeur Vaiss,
2002
May
, 95 (440-6).
1127
Priori SG
et al.
Natural history of Brugada syndrome: insights for risk stratification and management.
Circulation,
2002
Mar
19
, 105 (1342-7).
1128
Cormier JW
et al.
Secondary structure of the human cardiac Na+ channel C terminus: evidence for a role of helical structures in modulation of channel inactivation.
J. Biol. Chem.,
2002
Mar
15
, 277 (9233-41).
1129
Zimmer T
et al.
Mouse heart Na+ channels: primary structure and function of two isoforms and alternatively spliced variants.
Am. J. Physiol. Heart Circ. Physiol.,
2002
Mar
, 282 (H1007-17).
1130
Nagatomo T
et al.
Rate-dependent QT shortening mechanism for the LQT3 deltaKPQ mutant.
Cardiovasc. Res.,
2002
Jun
, 54 (624-9).
1131
Sangwatanaroj S
et al.
Linkage analyses and SCN5A mutations screening in five sudden unexplained death syndrome (Lai-tai) families.
,
2002
Jun
, 85 Suppl 1 (S54-61).
1132
Smits JP
et al.
Genotype-phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5A-related patients from non-SCN5A-related patients.
J. Am. Coll. Cardiol.,
2002
Jul
17
, 40 (350-6).
1133
Liu H
et al.
Channel openings are necessary but not sufficient for use-dependent block of cardiac Na(+) channels by flecainide: evidence from the analysis of disease-linked mutations.
J. Gen. Physiol.,
2002
Jul
, 120 (39-51).
1135
Wang DW
et al.
Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block.
Circulation,
2002
Jan
22
, 105 (341-6).
1136
Baroudi G
et al.
Expression and intracellular localization of an SCN5A double mutant R1232W/T1620M implicated in Brugada syndrome.
Circ. Res.,
2002
Jan
11
, 90 (E11-6).
1137
Holm AN
et al.
Sodium current in human jejunal circular smooth muscle cells.
Gastroenterology,
2002
Jan
, 122 (178-87).
1138
Weiss R
et al.
Clinical and molecular heterogeneity in the Brugada syndrome: a novel gene locus on chromosome 3.
Circulation,
2002
Feb
12
, 105 (707-13).
1139
Vatta M
et al.
Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome.
Hum. Mol. Genet.,
2002
Feb
1
, 11 (337-45).
1140
Wu L
et al.
Localization of Nav1.5 sodium channel protein in the mouse brain.
Neuroreport,
2002
Dec
20
, 13 (2547-51).
1141
Liu W
et al.
KCNQ1 and KCNH2 mutations associated with long QT syndrome in a Chinese population.
Hum. Mutat.,
2002
Dec
, 20 (475-6).
1142
Chen S
et al.
SNP S1103Y in the cardiac sodium channel gene SCN5A is associated with cardiac arrhythmias and sudden death in a white family.
J. Med. Genet.,
2002
Dec
, 39 (913-5).
1143
Splawski I
et al.
Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia.
Science,
2002
Aug
23
, 297 (1333-6).
1144
Valdivia CR
et al.
A novel SCN5A arrhythmia mutation, M1766L, with expression defect rescued by mexiletine.
Cardiovasc. Res.,
2002
Aug
1
, 55 (279-89).
1145
Mujtaba MG
et al.
Prenylamine block of Nav1.5 channel is mediated via a receptor distinct from that of local anesthetics.
Mol. Pharmacol.,
2002
Aug
, 62 (415-22).
1146
Hamon A
et al.
Characterization of scorpion alpha-like toxin group using two new toxins from the scorpion Leiurus quinquestriatus hebraeus.
Eur. J. Biochem.,
2002
Aug
, 269 (3920-33).
1147
Papadatos GA
et al.
Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a.
Proc. Natl. Acad. Sci. U.S.A.,
2002
Apr
30
, 99 (6210-5).
1148
Yang P
et al.
Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes.
Circulation,
2002
Apr
23
, 105 (1943-8).
1149
Pusch M
Myotonia caused by mutations in the muscle chloride channel gene CLCN1.
Hum. Mutat.,
2002
Apr
, 19 (423-34).
1150
Vatta M
et al.
Novel mutations in domain I of SCN5A cause Brugada syndrome.
Mol. Genet. Metab.,
2002
Apr
, 75 (317-24).
1151
Noebels JL
Sodium channel gene expression and epilepsy.
Novartis Found. Symp.,
2002
, 241 (109-20; discussion 120-3, 226-32).
1152
Levy-Nissenbaum E
et al.
Genetic analysis of Brugada syndrome in Israel: two novel mutations and possible genetic heterogeneity.
Genet. Test.,
2001
Winter
, 5 (331-4).
1153
Viswanathan PC
et al.
Gating-dependent mechanisms for flecainide action in SCN5A-linked arrhythmia syndromes.
Circulation,
2001
Sep
4
, 104 (1200-5).
1154
Wedekind H
et al.
De novo mutation in the SCN5A gene associated with early onset of sudden infant death.
Circulation,
2001
Sep
4
, 104 (1158-64).
1155
Nuyens D
et al.
Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome.
Nat. Med.,
2001
Sep
, 7 (1021-7).
1156
Perkiömäki JS
et al.
Heart rate variability in patients with congenital long QT syndrome.
Ann Noninvasive Electrocardiol,
2001
Oct
, 6 (298-304).
1157
Ackerman MJ
et al.
Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome.
JAMA,
2001
Nov
14
, 286 (2264-9).
1158
Ko YL
et al.
Linkage and mutation analysis in two Taiwanese families with long QT syndrome.
J. Formos. Med. Assoc.,
2001
Nov
, 100 (767-71).
1159
Vilin YY
et al.
A novel mechanism associated with idiopathic ventricular fibrillation (IVF) mutations R1232W and T1620M in human cardiac sodium channels.
Pflugers Arch.,
2001
May
, 442 (204-11).
1160
Dhar Malhotra J
et al.
Characterization of sodium channel alpha- and beta-subunits in rat and mouse cardiac myocytes.
Circulation,
2001
Mar
6
, 103 (1303-10).
1161
Grant AO
Molecular biology of sodium channels and their role in cardiac arrhythmias.
Am. J. Med.,
2001
Mar
, 110 (296-305).
1162
Cerrone M
et al.
[Long QT syndrome and Brugada syndrome: 2 aspects of the same disease?]
,
2001
Mar
, 2 (253-7).
1163
Baroudi G
et al.
Novel mechanism for Brugada syndrome: defective surface localization of an SCN5A mutant (R1432G).
Circ. Res.,
2001
Jun
22
, 88 (E78-83).
1164
Towbin JA
Ventricular tachycardia or conduction disease: what is the mechanism of death associated with SCN5A?
J. Cardiovasc. Electrophysiol.,
2001
Jun
, 12 (637-8).
1165
Lupoglazoff JM
et al.
Homozygous SCN5A mutation in long-QT syndrome with functional two-to-one atrioventricular block.
Circ. Res.,
2001
Jul
20
, 89 (E16-21).
1166
Bajanowski T
et al.
Prolonged QT interval and sudden infant death--report of two cases.
Forensic Sci. Int.,
2001
Jan
1
, 115 (147-53).
1167
Wan X
et al.
Accelerated inactivation in a mutant Na(+) channel associated with idiopathic ventricular fibrillation.
Am. J. Physiol. Heart Circ. Physiol.,
2001
Jan
, 280 (H354-60).
1168
Tan HL
et al.
A sodium-channel mutation causes isolated cardiac conduction disease.
Nature,
2001
Feb
22
, 409 (1043-7).
1169
Mantegazza M
et al.
Role of the C-terminal domain in inactivation of brain and cardiac sodium channels.
Proc. Natl. Acad. Sci. U.S.A.,
2001
Dec
18
, 98 (15348-53).
1170
Kyndt F
et al.
Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family.
Circulation,
2001
Dec
18
, 104 (3081-6).
1171
Fahmi AI
et al.
The sodium channel beta-subunit SCN3b modulates the kinetics of SCN5a and is expressed heterogeneously in sheep heart.
J. Physiol. (Lond.),
2001
Dec
15
, 537 (693-700).
1172
Zareba W
et al.
Altered atrial, atrioventricular, and ventricular conduction in patients with the long QT syndrome caused by the DeltaKPQ SCN5A sodium channel gene mutation.
Am. J. Cardiol.,
2001
Dec
1
, 88 (1311-4).
1173
Rivolta I
et al.
Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes.
J. Biol. Chem.,
2001
Aug
17
, 276 (30623-30).
1174
Piippo K
et al.
Effect of the antimalarial drug halofantrine in the long QT syndrome due to a mutation of the cardiac sodium channel gene SCN5A.
Am. J. Cardiol.,
2001
Apr
1
, 87 (909-11).
1175
Towbin JA
et al.
Genotype and severity of long QT syndrome.
Drug Metab. Dispos.,
2001
Apr
, 29 (574-9).
1176
Balser JR
The cardiac sodium channel: gating function and molecular pharmacology.
J. Mol. Cell. Cardiol.,
2001
Apr
, 33 (599-613).
1177
Windle JR
et al.
Normalization of ventricular repolarization with flecainide in long QT syndrome patients with SCN5A:DeltaKPQ mutation.
Ann Noninvasive Electrocardiol,
2001
Apr
, 6 (153-8).
1178
Allan WC
et al.
Long QT syndrome in children: the value of rate corrected QT interval and DNA analysis as screening tests in the general population.
,
2001
, 8 (173-7).
1179
Antzelevitch C
Molecular biology and cellular mechanisms of Brugada and long QT syndromes in infants and young children.
,
2001
, 34 Suppl (177-81).
1180
Li H
et al.
Current concepts in long QT syndrome.
Pediatr Cardiol,
2000 Nov-Dec
, 21 (542-50).
1181
Asensio E
et al.
[ST segment elevation, right bundle branch block and sudden death: Brugada's syndrome]
,
2000 May-Jun
, 70 (301-11).
1182
Georgijević Milić L
[Molecular genetics in the hereditary form of long QT syndrome]
Med. Pregl.,
2000 Jan-Feb
, 53 (51-4).
1183
Wang DW
et al.
Enhanced Na(+) channel intermediate inactivation in Brugada syndrome.
Circ. Res.,
2000
Oct
13
, 87 (E37-43).
1184
Wan X
et al.
Functional suppression of sodium channels by beta(1)-subunits as a molecular mechanism of idiopathic ventricular fibrillation.
J. Mol. Cell. Cardiol.,
2000
Oct
, 32 (1873-84).
1185
Chen SM
et al.
Brugada syndrome without mutation of the cardiac sodium channel gene in a Taiwanese patient.
J. Formos. Med. Assoc.,
2000
Nov
, 99 (860-2).
1186
Veldkamp MW
et al.
Two distinct congenital arrhythmias evoked by a multidysfunctional Na(+) channel.
Circ. Res.,
2000
May
12
, 86 (E91-7).
1187
Bowles NE
et al.
The "final common pathway" hypothesis and inherited cardiovascular disease. The role of cytoskeletal proteins in dilated cardiomyopathy.
,
2000
May
, 25 (168-75).
1188
Hayashi K
et al.
Identical twins with long QT syndrome associated with a missense mutation in the S4 region of the HERG.
,
2000
May
, 41 (399-404).
1189
Bennett PB
Long QT syndrome: biophysical and pharmacologic mechanisms in LQT3.
J. Cardiovasc. Electrophysiol.,
2000
Jul
, 11 (819-22).
1190
Brugada R
et al.
Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts.
Circulation,
2000
Feb
8
, 101 (510-5).
1191
Baroudi G
et al.
SCN5A mutation (T1620M) causing Brugada syndrome exhibits different phenotypes when expressed in Xenopus oocytes and mammalian cells.
FEBS Lett.,
2000
Feb
4
, 467 (12-6).
1192
Donahue LM
et al.
The cardiac sodium channel mRNA is expressed in the developing and adult rat and human brain.
Brain Res.,
2000
Dec
29
, 887 (335-43).
1193
Baroudi G
et al.
Biophysical phenotypes of SCN5A mutations causing long QT and Brugada syndromes.
FEBS Lett.,
2000
Dec
29
, 487 (224-8).
1194
Shimizu W
et al.
Effect of sodium channel blockers on ST segment, QRS duration, and corrected QT interval in patients with Brugada syndrome.
J. Cardiovasc. Electrophysiol.,
2000
Dec
, 11 (1320-9).
1195
Priori SG
et al.
The elusive link between LQT3 and Brugada syndrome: the role of flecainide challenge.
Circulation,
2000
Aug
29
, 102 (945-7).
1196
Abriel H
et al.
Molecular pharmacology of the sodium channel mutation D1790G linked to the long-QT syndrome.
Circulation,
2000
Aug
22
, 102 (921-5).
1197
Akai J
et al.
A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome.
FEBS Lett.,
2000
Aug
11
, 479 (29-34).
1198
Wehrens XH
et al.
Arrhythmogenic mechanism of an LQT-3 mutation of the human heart Na(+) channel alpha-subunit: A computational analysis.
Circulation,
2000
Aug
1
, 102 (584-90).
1199
Benhorin J
et al.
Effects of flecainide in patients with new SCN5A mutation: mutation-specific therapy for long-QT syndrome?
Circulation,
2000
Apr
11
, 101 (1698-706).
1200
Kambouris NG
et al.
A revised view of cardiac sodium channel "blockade" in the long-QT syndrome.
J. Clin. Invest.,
2000
Apr
, 105 (1133-40).
1201
Leenhardt A
et al.
[Present concepts of congenital long QT syndrome]
Arch Mal Coeur Vaiss,
2000
Apr
, 93 (17-21).
1202
Deschênes I
et al.
Electrophysiological characterization of SCN5A mutations causing long QT (E1784K) and Brugada (R1512W and R1432G) syndromes.
Cardiovasc. Res.,
2000
Apr
, 46 (55-65).
1203
Antzelevitch C
et al.
Cellular and ionic mechanisms responsible for the Brugada syndrome.
,
2000
, 33 Suppl (33-9).
1204
Bezzina C
et al.
A single Na(+) channel mutation causing both long-QT and Brugada syndromes.
Circ. Res.,
1999 Dec 3-17
, 85 (1206-13).
1205
Schott JJ
et al.
Cardiac conduction defects associate with mutations in SCN5A.
Nat. Genet.,
1999
Sep
, 23 (20-1).
1206
Wattanasirichaigoon D
et al.
Sodium channel abnormalities are infrequent in patients with long QT syndrome: identification of two novel SCN5A mutations.
Am. J. Med. Genet.,
1999
Oct
29
, 86 (470-6).
1207
Dumaine R
et al.
Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent.
Circ. Res.,
1999
Oct
29
, 85 (803-9).
1208
Sepp R
et al.
[Molecular genetics of the long QT syndrome: clinical aspects]
,
1999
Nov
21
, 140 (2633-8).
1209
Couderc JP
et al.
Beat-to-Beat repolarization variability in LQTS patients with the SCN5A sodium channel gene mutation.
,
1999
Nov
, 22 (1581-92).
1210
Antzelevitch C
Ion channels and ventricular arrhythmias: cellular and ionic mechanisms underlying the Brugada syndrome.
Curr. Opin. Cardiol.,
1999
May
, 14 (274-9).
1211
Chen Q
et al.
Homozygous deletion in KVLQT1 associated with Jervell and Lange-Nielsen syndrome.
Circulation,
1999
Mar
16
, 99 (1344-7).
1212
Wei J
et al.
Congenital long-QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na+ channel.
Circulation,
1999
Jun
22
, 99 (3165-71).
1213
Hartmann HA
et al.
Selective localization of cardiac SCN5A sodium channels in limbic regions of rat brain.
Nat. Neurosci.,
1999
Jul
, 2 (593-5).
1214
Gussak I
et al.
The Brugada syndrome: clinical, electrophysiologic and genetic aspects.
J. Am. Coll. Cardiol.,
1999
Jan
, 33 (5-15).
1215
Rook MB
et al.
Human SCN5A gene mutations alter cardiac sodium channel kinetics and are associated with the Brugada syndrome.
Cardiovasc. Res.,
1999
Dec
, 44 (507-17).
1216
Dib-Hajj SD
et al.
Coding sequence, genomic organization, and conserved chromosomal localization of the mouse gene Scn11a encoding the sodium channel NaN.
Genomics,
1999
Aug
1
, 59 (309-18).
1217
Schulze-Bahr E
et al.
The LQT syndromes--current status of molecular mechanisms.
,
1999
Apr
, 88 (245-54).
1218
Antzelevitch C
et al.
Transmural dispersion of repolarization and arrhythmogenicity: the Brugada syndrome versus the long QT syndrome.
,
1999
, 32 Suppl (158-65).
1219
Wang Q
et al.
The molecular basis of long QT syndrome and prospects for therapy.
,
1998
Sep
, 4 (382-8).
1221
Chen Q
et al.
Genetic basis and molecular mechanism for idiopathic ventricular fibrillation.
Nature,
1998
Mar
19
, 392 (293-6).
1222
Ackerman MJ
The long QT syndrome: ion channel diseases of the heart.
Mayo Clin. Proc.,
1998
Mar
, 73 (250-69).
1223
Kanters JK
et al.
Novel donor splice site mutation in the KVLQT1 gene is associated with long QT syndrome.
J. Cardiovasc. Electrophysiol.,
1998
Jun
, 9 (620-4).
1224
An RH
et al.
Novel LQT-3 mutation affects Na+ channel activity through interactions between alpha- and beta1-subunits.
Circ. Res.,
1998
Jul
27
, 83 (141-6).
1225
Splawski I
et al.
Genomic structure of three long QT syndrome genes: KVLQT1, HERG, and KCNE1.
Genomics,
1998
Jul
1
, 51 (86-97).
1226
Duggal P
et al.
Mutation of the gene for IsK associated with both Jervell and Lange-Nielsen and Romano-Ward forms of Long-QT syndrome.
Circulation,
1998
Jan
20
, 97 (142-6).
1227
Kambouris NG
et al.
Phenotypic characterization of a novel long-QT syndrome mutation (R1623Q) in the cardiac sodium channel.
Circulation,
1998
Feb
24
, 97 (640-4).
1228
Makita N
et al.
A de novo missense mutation of human cardiac Na+ channel exhibiting novel molecular mechanisms of long QT syndrome.
FEBS Lett.,
1998
Feb
13
, 423 (5-9).
1229
Wang Q
et al.
Genetics, molecular mechanisms and management of long QT syndrome.
Ann. Med.,
1998
Feb
, 30 (58-65).
1230
Wattanasirichaigoon D
et al.
Molecular genetics of long-QT syndrome.
Curr. Opin. Pediatr.,
1998
Dec
, 10 (628-34).
1231
Li H
et al.
New mutations in the KVLQT1 potassium channel that cause long-QT syndrome.
Circulation,
1998
Apr
7
, 97 (1264-9).
1232
Itoh T
et al.
Genomic organization and mutational analysis of HERG, a gene responsible for familial long QT syndrome.
Hum. Genet.,
1998
Apr
, 102 (435-9).
1233
Couderc JP
et al.
Beat-to-beat repolarization variability in amplitude and duration in LQTS patients with the SCN5A sodium channel gene mutation.
,
1998
, 31 Suppl (134).
1234
Vincent GM
The molecular genetics of the long QT syndrome: genes causing fainting and sudden death.
Annu. Rev. Med.,
1998
, 49 (263-74).
1235
Yamagishi H
et al.
A de novo missense mutation (R1623Q) of the SCN5A gene in a Japanese girl with sporadic long QT sydrome. Mutations in brief no. 140. Online.
Hum. Mutat.,
1998
, 11 (481).
1236
Benhorin J
et al.
Identification of a new SCN5A mutation, D1840G, associated with the long QT syndrome. Mutations in brief no. 153. Online.
Hum. Mutat.,
1998
, 12 (72).
1237
van den Berg MH
et al.
The long QT syndrome: a novel missense mutation in the S6 region of the KVLQT1 gene.
Hum. Genet.,
1997
Sep
, 100 (356-61).
1238
Schulze-Bahr E
et al.
Autosomal recessive long-QT syndrome (Jervell Lange-Nielsen syndrome) is genetically heterogeneous.
Hum. Genet.,
1997
Oct
, 100 (573-6).
1239
Wang Q
et al.
Molecular genetics of long QT syndrome from genes to patients.
Curr. Opin. Cardiol.,
1997
May
, 12 (310-20).
1240
Wu Q
et al.
Splicing of a divergent subclass of AT-AC introns requires the major spliceosomal snRNAs.
RNA,
1997
Jun
, 3 (586-601).
1241
Le Marec H
et al.
[Congenital long QT syndromes]
Arch Mal Coeur Vaiss,
1997
Jun
, 90 Spec No 3 (25-35).
1242
Tanaka T
et al.
Four novel KVLQT1 and four novel HERG mutations in familial long-QT syndrome.
Circulation,
1997
Feb
4
, 95 (565-7).
1243
Priori SG
et al.
Molecular biology of the long QT syndrome: impact on management.
,
1997
Aug
, 20 (2052-7).
1244
Roden DM
et al.
Multiple mechanisms in the long-QT syndrome. Current knowledge, gaps, and future directions. The SADS Foundation Task Force on LQTS.
Circulation,
1996
Oct
15
, 94 (1996-2012).
1245
Priori SG
et al.
The long QT syndrome: new diagnostic and therapeutic approach in the era of molecular biology.
,
1996
Oct
12
, 126 (1727-31).
1246
Wang DW
et al.
Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome.
Proc. Natl. Acad. Sci. U.S.A.,
1996
Nov
12
, 93 (13200-5).
1247
Wang Q
et al.
Genomic organization of the human SCN5A gene encoding the cardiac sodium channel.
Genomics,
1996
May
15
, 34 (9-16).
1249
Priori SG
et al.
Differential response to Na+ channel blockade, beta-adrenergic stimulation, and rapid pacing in a cellular model mimicking the SCN5A and HERG defects present in the long-QT syndrome.
Circ. Res.,
1996
Jun
, 78 (1009-15).
1250
Russell MW
et al.
The molecular genetics of the congenital long QT syndromes.
Curr. Opin. Cardiol.,
1996
Jan
, 11 (45-51).
1251
Lazzara R
Mechanisms and management of congenital and acquired long QT syndromes.
Arch Mal Coeur Vaiss,
1996
Feb
, 89 Spec No 1 (51-5).
1252
Wang Q
et al.
Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia.
Hum. Mol. Genet.,
1995
Sep
, 4 (1603-7).
1253
Moss AJ
et al.
ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome.
Circulation,
1995
Nov
15
, 92 (2929-34).
1254
Roden DM
et al.
Recent advances in understanding the molecular mechanisms of the long QT syndrome.
J. Cardiovasc. Electrophysiol.,
1995
Nov
, 6 (1023-31).
1255
Wang Q
et al.
SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome.
Cell,
1995
Mar
10
, 80 (805-11).
1256
Keating MT
Genetic approaches to cardiovascular disease. Supravalvular aortic stenosis, Williams syndrome, and long-QT syndrome.
Circulation,
1995
Jul
1
, 92 (142-7).
1257
Schwartz PJ
et al.
Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy.
Circulation,
1995
Dec
15
, 92 (3381-6).
1258
Bennett PB
et al.
Molecular mechanism for an inherited cardiac arrhythmia.
Nature,
1995
Aug
24
, 376 (683-5).
1259
George AL
et al.
Assignment of the human heart tetrodotoxin-resistant voltage-gated Na+ channel alpha-subunit gene (SCN5A) to band 3p21.
Cytogenet. Cell Genet.,
1995
, 68 (67-70).