ClC1
321 literature references associated to ClC1
1
Imbrici P
et al.
Multidisciplinary study of a new ClC-1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies.
FASEB J.,
2016
Jun
20
, ().
2
Riisager A
et al.
Protein kinase C dependent regulation of ClC-1 channels in active human muscle and its effect on fast and slow gating.
J. Physiol. (Lond.),
2016
Feb
9
, ().
3
Pedersen TH
et al.
Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle.
J. Gen. Physiol.,
2016
Apr
, 147 (291-308).
4
Imbrici P
et al.
ClC-1 mutations in myotonia congenita patients: insights into molecular gating mechanisms and genotype-phenotype correlation.
J. Physiol. (Lond.),
2015
Sep
15
, 593 (4181-99).
5
Portaro S
et al.
Clinical, Molecular, and Functional Characterization of CLCN1 Mutations in Three Families with Recessive Myotonia Congenita.
Neuromolecular Med.,
2015
Sep
, 17 (285-96).
6
Torbergsen T
et al.
Painful cramps and giant myotonic discharges in a family with the Nav1.4-G1306A mutation.
Muscle Nerve,
2015
Oct
, 52 (680-3).
7
Yoshinaga H
et al.
Phenotypic variability in childhood of skeletal muscle sodium channelopathies.
Pediatr. Neurol.,
2015
May
, 52 (504-8).
8
Skov M
et al.
Extracellular magnesium and calcium reduce myotonia in isolated ClC-1 chloride channel-inhibited human muscle.
Muscle Nerve,
2015
Jan
, 51 (65-71).
9
Bugiardini E
et al.
SCN4A mutation as modifying factor of myotonic dystrophy type 2 phenotype.
Neuromuscul. Disord.,
2015
Apr
, 25 (301-7).
10
Cannon SC
Channelopathies of skeletal muscle excitability.
Compr Physiol,
2015
Apr
, 5 (761-90).
11
Chen YA
et al.
The Cullin 4A/B-DDB1-Cereblon E3 Ubiquitin Ligase Complex Mediates the Degradation of CLC-1 Chloride Channels.
Sci Rep,
2015
, 5 (10667).
12
Ronstedt K
et al.
Impaired surface membrane insertion of homo- and heterodimeric human muscle chloride channels carrying amino-terminal myotonia-causing mutations.
Sci Rep,
2015
, 5 (15382).
13
Imbrici P
et al.
ClC-1 chloride channels: state-of-the-art research and future challenges.
Front Cell Neurosci,
2015
, 9 (156).
14
Licchetta L
et al.
Limbic encephalitis with anti-GAD antibodies and Thomsen myotonia: a casual or causal association?
Epileptic Disord,
2014
Sep
, 16 (362-5).
15
Riisager A
et al.
Determination of cable parameters in skeletal muscle fibres during repetitive firing of action potentials.
J. Physiol. (Lond.),
2014
Oct
15
, 592 (4417-29).
16
Cozzoli A
et al.
Angiotensin II modulates mouse skeletal muscle resting conductance to chloride and potassium ions and calcium homeostasis via the AT1 receptor and NADPH oxidase.
Am. J. Physiol., Cell Physiol.,
2014
Oct
1
, 307 (C634-47).
17
Hoche F
et al.
Novel N-terminal truncating CLCN1 mutation in severe Becker disease.
Muscle Nerve,
2014
Nov
, 50 (866-7).
18
Furby A
et al.
Heterozygous CLCN1 mutations can modulate phenotype in sodium channel myotonia.
Neuromuscul. Disord.,
2014
Nov
, 24 (953-9).
19
Dabby R
et al.
Myotonia in DNM2-related centronuclear myopathy.
J Neural Transm,
2014
May
, 121 (549-53).
20
Ulzi G
et al.
In vitro analysis of splice site mutations in the CLCN1 gene using the minigene assay.
Mol. Biol. Rep.,
2014
May
, 41 (2865-74).
21
Stölting G
et al.
ClC-1 and ClC-2 form hetero-dimeric channels with novel protopore functions.
Pflugers Arch.,
2014
Mar
19
, ().
22
Kubota T
et al.
[Myotonia and cardiac conduction defects in myotonic dystrophy and defect in ion channels].
Rinsho Byori,
2014
Mar
, 62 (246-54).
23
Ha K
et al.
Electrophysiological characteristics of six mutations in hClC-1 of Korean patients with myotonia congenita.
Mol. Cells,
2014
Mar
, 37 (202-12).
24
Tan SV
et al.
Chloride channels in myotonia congenita assessed by velocity recovery cycles.
Muscle Nerve,
2014
Jun
, 49 (845-57).
25
Liang W
et al.
Swelling-activated Cl- currents and intracellular CLC-3 are involved in proliferation of human pulmonary artery smooth muscle cells.
J. Hypertens.,
2014
Feb
, 32 (318-30).
26
Cardani R
et al.
Progression of muscle histopathology but not of spliceopathy in myotonic dystrophy type 2.
Neuromuscul. Disord.,
2014
Dec
, 24 (1042-53).
27
Li HF
et al.
Paroxysmal kinesigenic dyskinesia and myotonia congenita in the same family: coexistence of a PRRT2 mutation and two CLCN1 mutations.
Neurosci Bull,
2014
Dec
, 30 (1010-6).
28
Camerino GM
et al.
Protein kinase C theta (PKCθ) modulates the ClC-1 chloride channel activity and skeletal muscle phenotype: a biophysical and gene expression study in mouse models lacking the PKCθ.
Pflugers Arch.,
2014
Dec
, 466 (2215-28).
29
Kassardjian CD
et al.
Coexistence of DMPK gene expansion and CLCN1 missense mutation in the same patient.
Neurogenetics,
2014
Aug
, 15 (213-4).
30
Passeri E
et al.
Asymptomatic myotonia congenita unmasked by severe hypothyroidism.
Neuromuscul. Disord.,
2014
Apr
, 24 (365-7).
31
Richardson RC
et al.
Truncating CLCN1 mutations in myotonia congenita: variable patterns of inheritance.
Muscle Nerve,
2014
Apr
, 49 (593-600).
32
Stölting G
et al.
CLC channel function and dysfunction in health and disease.
Front Physiol,
2014
, 5 (378).
33
Gandolfi B
et al.
A novel mutation in CLCN1 associated with feline myotonia congenita.
PLoS ONE,
2014
, 9 (e109926).
34
Marson FA
et al.
Polymorphisms in the glutathione pathway modulate cystic fibrosis severity: a cross-sectional study.
BMC Med. Genet.,
2014
, 15 (27).
35
Cheng W
et al.
Myotonia congenita-associated mutations in chloride channel-1 affect zebrafish body wave swimming kinematics.
PLoS ONE,
2014
, 9 (e103445).
36
37
Zhang Y
et al.
Lactobacillus casei reduces susceptibility to type 2 diabetes via microbiota-mediated body chloride ion influx.
Sci Rep,
2014
, 4 (5654).
38
Hoppe K
et al.
In vitro muscle contracture investigations on the malignant hyperthermia like episodes in myotonia congenita.
Acta Anaesthesiol Scand,
2013
Sep
, 57 (1017-23).
39
Burge JA
et al.
Nongenomic actions of progesterone and 17β-estradiol on the chloride conductance of skeletal muscle.
Muscle Nerve,
2013
Oct
, 48 (589-91).
40
Desaphy JF
et al.
Functional characterization of ClC-1 mutations from patients affected by recessive myotonia congenita presenting with different clinical phenotypes.
Exp. Neurol.,
2013
Oct
, 248 (530-40).
41
Lucchiari S
et al.
Clinical evaluation and cellular electrophysiology of a recessive CLCN1 patient.
J. Physiol. Pharmacol.,
2013
Oct
, 64 (669-78).
42
Yamada T
et al.
Regulatory phosphorylation induces extracellular conformational changes in a CLC anion channel.
Biophys. J.,
2013
May
7
, 104 (1893-904).
43
Pierno S
et al.
An olive oil-derived antioxidant mixture ameliorates the age-related decline of skeletal muscle function.
Age (Dordr),
2013
May
30
, ().
44
Waters CW
et al.
Huntington disease skeletal muscle is hyperexcitable owing to chloride and potassium channel dysfunction.
Proc. Natl. Acad. Sci. U.S.A.,
2013
May
28
, 110 (9160-5).
45
Chen TT
et al.
Novel brain expression of ClC-1 chloride channels and enrichment of CLCN1 variants in epilepsy.
Neurology,
2013
Mar
19
, 80 (1078-85).
46
DiFranco M
et al.
Age-dependent chloride channel expression in skeletal muscle fibres of normal and HSA(LR) myotonic mice.
J. Physiol. (Lond.),
2013
Mar
1
, 591 (1347-71).
47
Borges AS
et al.
Clinical and molecular study of a new form of hereditary myotonia in Murrah water buffalo.
Neuromuscul. Disord.,
2013
Mar
, 23 (206-13).
48
Lakraj AA
et al.
Novel mutations in the CLCN1 gene of myotonia congenita: 2 case reports.
Yale J Biol Med,
2013
Mar
, 86 (101-6).
49
Brugnoni R
et al.
A large cohort of myotonia congenita probands: novel mutations and a high-frequency mutation region in exons 4 and 5 of the CLCN1 gene.
J. Hum. Genet.,
2013
Jun
6
, ().
50
Skov M
et al.
Extracellular magnesium and calcium reduce myotonia in ClC-1 inhibited rat muscle.
Neuromuscul. Disord.,
2013
Jun
, 23 (489-502).
51
Nam TS
et al.
An algorithm for candidate sequencing in non-dystrophic skeletal muscle channelopathies.
J. Neurol.,
2013
Jul
, 260 (1770-7).
52
de Paoli FV
et al.
Relationship between membrane Cl- conductance and contractile endurance in isolated rat muscles.
J. Physiol. (Lond.),
2013
Jan
15
, 591 (531-45).
53
Portaro S
et al.
Stiffness as a presenting symptom of an odd clinical condition caused by multiple sclerosis and myotonia congenita.
Neuromuscul. Disord.,
2013
Jan
, 23 (52-5).
54
Arnaiz I
et al.
Changing expression of chloride channels during preimplantation mouse development.
Reproduction,
2013
Jan
, 145 (73-84).
55
Ivanova EA
et al.
[Frequency and causes of prevalence of p.Arg894* mutation in CLCN1 gene responsible for development of Thomsen's and Becker's myotonias in Russian population].
Genetika,
2013
Dec
, 49 (1407-15).
56
Morrow JM
et al.
Muscle MRI reveals distinct abnormalities in genetically proven non-dystrophic myotonias.
Neuromuscul. Disord.,
2013
Aug
, 23 (637-46).
57
Horga A
et al.
Prevalence study of genetically defined skeletal muscle channelopathies in England.
Neurology,
2013
Apr
16
, 80 (1472-5).
58
Skálová D
et al.
CLCN1 Mutations in Czech Patients with Myotonia Congenita, In Silico Analysis of Novel and Known Mutations in the Human Dimeric Skeletal Muscle Chloride Channel.
PLoS ONE,
2013
, 8 (e82549).
59
Bennetts B
et al.
Molecular determinants of common gating of a ClC chloride channel.
Nat Commun,
2013
, 4 (2507).
60
Sasaki R
et al.
[Compound heterozygous mutations in the muscle chloride channel gene (CLCN1) in a Japanese family with Thomsen's disease].
Rinsho Shinkeigaku,
2013
, 53 (316-9).
61
Oana K
et al.
Manumycin A corrects aberrant splicing of Clcn1 in myotonic dystrophy type 1 (DM1) mice.
Sci Rep,
2013
, 3 (2142).
62
Lee TT
et al.
Myotonia congenita mutation enhances the degradation of human CLC-1 chloride channels.
PLoS ONE,
2013
, 8 (e55930).
64
Koebis M
et al.
Ultrasound-enhanced delivery of morpholino with Bubble liposomes ameliorates the myotonia of myotonic dystrophy model mice.
Sci Rep,
2013
, 3 (2242).
66
[The spectrum of CLCN1 gene mutations in patients with nondystrophic Thomsen's and Becker's myotonias].
Genetika,
2012
Sep
, 48 (1113-23).
67
Miyazaki H
et al.
CLC anion channel regulatory phosphorylation and conserved signal transduction domains.
Biophys. J.,
2012
Oct
17
, 103 (1706-18).
68
Cardani R
et al.
Co-segregation of DM2 with a recessive CLCN1 mutation in juvenile onset of myotonic dystrophy type 2.
J. Neurol.,
2012
Oct
, 259 (2090-9).
69
Ursu SF
et al.
ClC1 chloride channel in myotonic dystrophy type 2 and ClC1 splicing in vitro.
Acta Myol,
2012
Oct
, 31 (144-53).
70
Raheem O
et al.
New immunohistochemical method for improved myotonia and chloride channel mutation diagnostics.
Neurology,
2012
Nov
27
, 79 (2194-200).
71
Howery AE
et al.
A designed inhibitor of a CLC antiporter blocks function through a unique binding mode.
Chem. Biol.,
2012
Nov
21
, 19 (1460-70).
72
Mazón MJ
et al.
Screening for mutations in Spanish families with myotonia. Functional analysis of novel mutations in CLCN1 gene.
Neuromuscul. Disord.,
2012
Mar
, 22 (231-43).
73
Raja Rayan DL
et al.
A new explanation for recessive myotonia congenita: exon deletions and duplications in CLCN1.
Neurology,
2012
Jun
12
, 78 (1953-8).
74
Bennetts B
et al.
Intracellular β-nicotinamide adenine dinucleotide inhibits the skeletal muscle ClC-1 chloride channel.
J. Biol. Chem.,
2012
Jul
27
, 287 (25808-20).
75
Stauber T
et al.
Cell biology and physiology of CLC chloride channels and transporters.
Compr Physiol,
2012
Jul
, 2 (1701-44).
76
Li D
et al.
Cryptococcus neoformans Ca(2+) homeostasis requires a chloride channel/antiporter Clc1 in JEC21, but not in H99.
FEMS Yeast Res.,
2012
Feb
, 12 (69-77).
77
Gurgel-Giannetti J
et al.
Thomsen or Becker myotonia? A novel autosomal recessive nonsense mutation in the CLCN1 gene associated with a mild phenotype.
Muscle Nerve,
2012
Feb
, 45 (279-83).
78
Richman DP
et al.
Dominantly inherited myotonia congenita resulting from a mutation that increases open probability of the muscle chloride channel CLC-1.
Neuromolecular Med.,
2012
Dec
, 14 (328-37).
79
Chen ZT
et al.
[Analysis of CLCN1 gene mutations in 2 patients with myotonia congenita].
Zhonghua Yi Xue Yi Chuan Xue Za Zhi,
2012
Dec
, 29 (690-2).
80
Renaud JM
et al.
Lessons learned from muscle fatigue: implications for treatment of patients with hyperkalemic periodic paralysis.
Recent Pat Biotechnol,
2012
Dec
, 6 (184-91).
81
Weinberger S
et al.
Disease-causing mutations C277R and C277Y modify gating of human ClC-1 chloride channels in myotonia congenita.
J. Physiol. (Lond.),
2012
Aug
1
, 590 (3449-64).
82
Du H
et al.
Myotonia congenita with strabismus in a large family with a mutation in the SCN4A gene.
Eye (Lond),
2012
Aug
, 26 (1039-43).
83
Ulzi G
et al.
Myotonia congenita: Novel mutations in CLCN1 gene and functional characterizations in Italian patients.
,
2012
Apr
20
, ().
84
Wijnberg ID
et al.
A missense mutation in the skeletal muscle chloride channel 1 (CLCN1) as candidate causal mutation for congenital myotonia in a New Forest pony.
Neuromuscul. Disord.,
2012
Apr
, 22 (361-7).
85
Zielonka D
et al.
A Becker myotonia patient with compound heterozygosity for CLCN1 mutations and Prinzmetal angina pectoris.
Neuromuscul. Disord.,
2012
Apr
, 22 (355-60).
86
Lippiat JD
et al.
The CLC-5 2Cl(-)/H(+) exchange transporter in endosomal function and Dent's disease.
Front Physiol,
2012
, 3 (449).
87
Lehmann-Horn F
et al.
A novel N440K sodium channel mutation causes myotonia with exercise-induced weakness--exclusion of CLCN1 exon deletion/duplication by MLPA.
Acta Myol,
2011
Oct
, 30 (133-7).
88
Burge JA
et al.
Novel Insights into the Pathomechanisms of Skeletal Muscle Channelopathies.
,
2011
Nov
15
, ().
89
Lamb GD
et al.
On the localization of ClC-1 in skeletal muscle fibers.
J. Gen. Physiol.,
2011
Mar
, 137 (327-9; author reply 331-3).
90
Ma L
et al.
Movement of hClC-1 C-termini during common gating and limits on their cytoplasmic location.
Biochem. J.,
2011
Jun
1
, 436 (415-28).
91
Staunton L
et al.
Identification of secondary effects of hyperexcitability by proteomic profiling of myotonic mouse muscle.
,
2011
Jun
1
, ().
92
DiFranco M
et al.
Chloride currents from the transverse tubular system in adult mammalian skeletal muscle fibers.
J. Gen. Physiol.,
2011
Jan
, 137 (21-41).
93
Modoni A
et al.
Low-rate repetitive nerve stimulation protocol in an Italian cohort of patients affected by recessive myotonia congenita.
J Clin Neurophysiol,
2011
Feb
, 28 (39-44).
94
Fallah G
et al.
TMEM16A(a)/anoctamin-1 shares a homodimeric architecture with CLC chloride channels.
Mol. Cell Proteomics,
2011
Feb
, 10 (M110.004697).
95
Sun C
et al.
Myotonia congenita and myotonic dystrophy in the same family: coexistence of a CLCN1 mutation and expansion in the CNBP (ZNF9) gene.
Clin. Genet.,
2011
Dec
, 80 (574-80).
96
Tsujino A
et al.
A CLCN1 mutation in dominant myotonia congenita impairs the increment of chloride conductance during repetitive depolarization.
Neurosci. Lett.,
2011
Apr
25
, 494 (155-60).
97
Tseng PY
et al.
Binding of ATP to the CBS domains in the C-terminal region of CLC-1.
J. Gen. Physiol.,
2011
Apr
, 137 (357-68).
98
Tang CY
et al.
Physiology and pathophysiology of CLC-1: mechanisms of a chloride channel disease, myotonia.
J. Biomed. Biotechnol.,
2011
, 2011 (685328).
99
van Lunteren E
et al.
Fatigue-inducing stimulation resolves myotonia in a drug-induced model.
BMC Physiol.,
2011
, 11 (5).
100
Simske JS
et al.
Claudin family proteins in Caenorhabditis elegans.
Methods Mol. Biol.,
2011
, 762 (147-69).
101
Gao F
et al.
Novel chloride channel gene mutations in two unrelated Chinese families with myotonia congenita.
Neurol India,
2010 Sep-Oct
, 58 (743-6).
102
Lyons MJ
et al.
Novel CLCN1 mutation in carbamazepine-responsive myotonia congenita.
Pediatr. Neurol.,
2010
May
, 42 (365-8).
103
Kim KX
et al.
Inward-rectifier chloride currents in Reissner's membrane epithelial cells.
,
2010
Mar
9
, ().
104
Kumar KR
et al.
A novel CLCN1 mutation (G1652A) causing a mild phenotype of thomsen disease.
Muscle Nerve,
2010
Mar
, 41 (412-5).
105
Cao L
et al.
Chloride channels and transporters in human corneal epithelium.
Exp. Eye Res.,
2010
Jun
, 90 (771-9).
106
Desaphy JF
et al.
Antioxidant treatment of hindlimb-unloaded mouse counteracts fiber type transition but not atrophy of disused muscles.
Pharmacol. Res.,
2010
Jun
, 61 (553-63).
107
Cederholm JM
et al.
Inter-subunit communication and fast gate integrity are important for common gating in hClC-1.
Int. J. Biochem. Cell Biol.,
2010
Jul
, 42 (1182-8).
108
Kornblum C
et al.
Whole-body high-field MRI shows no skeletal muscle degeneration in young patients with recessive myotonia congenita.
Acta Neurol. Scand.,
2010
Feb
, 121 (131-5).
109
de Paoli FV
et al.
Lactate per se improves the excitability of depolarized rat skeletal muscle by reducing the Cl- conductance.
J. Physiol. (Lond.),
2010
Dec
1
, 588 (4785-94).
110
Lueck JD
et al.
Sarcolemmal-restricted localization of functional ClC-1 channels in mouse skeletal muscle.
J. Gen. Physiol.,
2010
Dec
, 136 (597-613).
111
Tian M
et al.
Chloride channels regulate chondrogenesis in chicken mandibular mesenchymal cells.
Arch. Oral Biol.,
2010
Dec
, 55 (938-45).
112
Shalata A
et al.
Myotonia congenita in a large consanguineous Arab family: insight into the clinical spectrum of carriers and double heterozygotes of a novel mutation in the chloride channel CLCN1 gene.
Muscle Nerve,
2010
Apr
, 41 (464-9).
113
Hsiao KM
et al.
Functional study of CLC-1 mutants expressed in Xenopus oocytes reveals that a C-terminal region Thr891-Ser892-Thr893 is responsible for the effects of protein kinase C activator.
Cell. Physiol. Biochem.,
2010
, 25 (687-94).
114
Yu Z
et al.
Altered RNA splicing contributes to skeletal muscle pathology in Kennedy disease knock-in mice.
Dis Model Mech,
2009 Sep-Oct
, 2 (500-7).
115
Arzel-Hézode M
et al.
Homozygosity for dominant mutations increases severity of muscle channelopathies.
Muscle Nerve,
2009
Oct
30
, ().
116
Pedersen TH
et al.
Comparison of regulated passive membrane conductance in action potential-firing fast- and slow-twitch muscle.
J. Gen. Physiol.,
2009
Oct
, 134 (323-37).
117
Pedersen TH
et al.
Regulation of ClC-1 and KATP channels in action potential-firing fast-twitch muscle fibers.
J. Gen. Physiol.,
2009
Oct
, 134 (309-22).
118
Kino Y
et al.
MBNL and CELF proteins regulate alternative splicing of the skeletal muscle chloride channel CLCN1.
Nucleic Acids Res.,
2009
Oct
, 37 (6477-90).
119
Dupré N
et al.
Clinical, electrophysiologic, and genetic study of non-dystrophic myotonia in French-Canadians.
Neuromuscul. Disord.,
2009
May
, 19 (330-4).
120
Jung J
et al.
Allelic-based gene-gene interaction associated with quantitative traits.
Genet. Epidemiol.,
2009
May
, 33 (332-43).
121
Trip J
et al.
Redefining the clinical phenotypes of non-dystrophic myotonic syndromes.
J. Neurol. Neurosurg. Psychiatr.,
2009
Jun
, 80 (647-52).
122
Ma L
et al.
Functional study of cytoplasmic loops of human skeletal muscle chloride channel, hClC-1.
Int. J. Biochem. Cell Biol.,
2009
Jun
, 41 (1402-9).
123
Moon IS
et al.
Novel CLCN1 mutations and clinical features of Korean patients with myotonia congenita.
J. Korean Med. Sci.,
2009
Dec
, 24 (1038-44).
124
Osborne RJ
et al.
Transcriptional and post-transcriptional impact of toxic RNA in myotonic dystrophy.
Hum. Mol. Genet.,
2009
Apr
15
, 18 (1471-81).
125
Zdebik AA
Statins and fibrate target ClC-1 - from side effects to CLC pharmacology.
Br. J. Pharmacol.,
2009
Apr
, 156 (1204-5).
126
Pierno S
et al.
Statins and fenofibrate affect skeletal muscle chloride conductance in rats by differently impairing ClC-1 channel regulation and expression.
Br. J. Pharmacol.,
2009
Apr
, 156 (1206-15).
128
Hou J
et al.
ClC chloride channels in tooth germ and odontoblast-like MDPC-23 cells.
Arch. Oral Biol.,
2008
Sep
, 53 (874-8).
129
Zhang XD
et al.
ATP inhibition of CLC-1 is controlled by oxidation and reduction.
J. Gen. Physiol.,
2008
Oct
, 132 (421-8).
130
Cleland JC
et al.
Treatment of neuromuscular channelopathies: current concepts and future prospects.
,
2008
Oct
, 5 (607-12).
131
Thomas J
et al.
Recessive CLCN1 mutation presenting as Thomsen disease.
Muscle Nerve,
2008
Nov
, 38 (1515-7).
132
Fialho D
et al.
Non-genomic effects of sex hormones on CLC-1 may contribute to gender differences in myotonia congenita.
Neuromuscul. Disord.,
2008
Nov
, 18 (869-72).
133
Suominen T
et al.
High frequency of co-segregating CLCN1 mutations among myotonic dystrophy type 2 patients from Finland and Germany.
J. Neurol.,
2008
Nov
, 255 (1731-6).
134
Cañero DC
et al.
Influence of the chloride channel of Fusarium oxysporum on extracellular laccase activity and virulence on tomato plants.
Microbiology (Reading, Engl.),
2008
May
, 154 (1474-81).
135
Morales F
et al.
Clinical and molecular diagnosis of a Costa Rican family with autosomal recessive myotonia congenita (Becker disease) carrying a new mutation in the CLCN1 gene.
Rev. Biol. Trop.,
2008
Mar
, 56 (1-11).
136
Papponen H
et al.
F413C and A531V but not R894X myotonia congenita mutations cause defective endoplasmic reticulum export of the muscle-specific chloride channel CLC-1.
Muscle Nerve,
2008
Mar
, 37 (317-25).
137
Graves AR
et al.
The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes.
Nature,
2008
Jun
5
, 453 (788-92).
138
Wakeman B
et al.
Extraocular muscle hypertrophy in myotonia congenita.
,
2008
Jun
, 12 (294-6).
139
Ma L
et al.
Analysis of carboxyl tail function in the skeletal muscle Cl- channel hClC-1.
Biochem. J.,
2008
Jul
1
, 413 (61-9).
140
Lin MJ
et al.
Functional studies of the effect of NO donor on human CLCN1 polymorphism/mutants expressed in Xenopus laevis oocytes.
Biochem. Biophys. Res. Commun.,
2008
Jan
25
, 365 (724-8).
141
Cherian A
et al.
Muscle channelopathies and electrophysiological approach.
Ann Indian Acad Neurol,
2008
Jan
, 11 (20-7).
142
Zdebik AA
et al.
Determinants of anion-proton coupling in mammalian endosomal CLC proteins.
J. Biol. Chem.,
2008
Feb
15
, 283 (4219-27).
143
Morales F
et al.
Gene symbol: CLCN1. Disease: Myotonia congenita.
Hum. Genet.,
2008
Feb
, 123 (104-5).
144
Hao M
et al.
Muscleblind-like 2 (Mbnl2) -deficient mice as a model for myotonic dystrophy.
Dev. Dyn.,
2008
Feb
, 237 (403-10).
145
Bernard G
et al.
Dosage effect of a dominant CLCN1 mutation: a novel syndrome.
J. Child Neurol.,
2008
Feb
, 23 (163-6).
146
Zifarelli G
et al.
The muscle chloride channel ClC-1 is not directly regulated by intracellular ATP.
J. Gen. Physiol.,
2008
Feb
, 131 (109-16).
147
Trip J
et al.
In tandem analysis of CLCN1 and SCN4A greatly enhances mutation detection in families with non-dystrophic myotonia.
Eur. J. Hum. Genet.,
2008
Aug
, 16 (921-9).
148
Burgunder JM
et al.
Novel chloride channel mutations leading to mild myotonia among Chinese.
Neuromuscul. Disord.,
2008
Aug
, 18 (633-40).
149
Diédhiou CJ
et al.
The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice.
BMC Plant Biol.,
2008
, 8 (49).
151
Finnigan DF
et al.
A novel mutation of the CLCN1 gene associated with myotonia hereditaria in an Australian cattle dog.
J. Vet. Intern. Med.,
2007 May-Jun
, 21 (458-63).
152
Hoffert JD
et al.
An automated platform for analysis of phosphoproteomic datasets: application to kidney collecting duct phosphoproteins.
J. Proteome Res.,
2007
Sep
, 6 (3501-8).
153
Mitchell CW
et al.
Diffusely increased insertional activity: "EMG disease" or asymptomatic myotonia congenita? A report of 2 cases.
,
2007
Sep
, 88 (1212-3).
154
Bennetts B
et al.
Inhibition of skeletal muscle ClC-1 chloride channels by low intracellular pH and ATP.
J. Biol. Chem.,
2007
Nov
9
, 282 (32780-91).
155
Rossignol E
et al.
A novel founder SCN4A mutation causes painful cold-induced myotonia in French-Canadians.
Neurology,
2007
Nov
13
, 69 (1937-41).
156
Michel P
et al.
Comparative efficacy of repetitive nerve stimulation, exercise, and cold in differentiating myotonic disorders.
Muscle Nerve,
2007
Nov
, 36 (643-50).
157
Morales F
et al.
Novel human pathological mutations. Gene symbol: CLCN1. Disease: myotonia congenita, autosomal recessive.
Hum. Genet.,
2007
Nov
, 122 (413).
158
van Lunteren E
et al.
Genetic CLC-1 chloride channel deficiency modifies diaphragm muscle isometric contractile properties.
,
2007
Mar
15
, 155 (220-6).
159
van Lunteren E
et al.
Isotonic contractile impairment due to genetic CLC-1 chloride channel deficiency in myotonic mouse diaphragm muscle.
Exp. Physiol.,
2007
Jul
, 92 (717-29).
160
Liantonio A
et al.
Niflumic acid inhibits chloride conductance of rat skeletal muscle by directly inhibiting the CLC-1 channel and by increasing intracellular calcium.
Br. J. Pharmacol.,
2007
Jan
, 150 (235-47).
161
Lueck JD
et al.
Muscle chloride channel dysfunction in two mouse models of myotonic dystrophy.
J. Gen. Physiol.,
2007
Jan
, 129 (79-94).
162
Fialho D
et al.
Chloride channel myotonia: exon 8 hot-spot for dominant-negative interactions.
Brain,
2007
Dec
, 130 (3265-74).
163
Wheeler TM
et al.
Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy.
J. Clin. Invest.,
2007
Dec
, 117 (3952-7).
164
Chang TY
et al.
Phenotypic variability of autosomal dominant myotonia congenita in a Taiwanese family with muscle chloride channel (CLCN1) mutation.
Acta Neurol Taiwan,
2007
Dec
, 16 (214-20).
165
Tseng PY
et al.
Cytoplasmic ATP inhibition of CLC-1 is enhanced by low pH.
J. Gen. Physiol.,
2007
Aug
, 130 (217-21).
166
Chen W
et al.
Haploinsuffciency for Znf9 in Znf9+/- mice is associated with multiorgan abnormalities resembling myotonic dystrophy.
J. Mol. Biol.,
2007
Apr
20
, 368 (8-17).
167
Macías MJ
et al.
Myotonia-related mutations in the distal C-terminus of ClC-1 and ClC-0 chloride channels affect the structure of a poly-proline helix.
Biochem. J.,
2007
Apr
1
, 403 (79-87).
168
Lueck JD
et al.
Chloride channelopathy in myotonic dystrophy resulting from loss of posttranscriptional regulation for CLCN1.
Am. J. Physiol., Cell Physiol.,
2007
Apr
, 292 (C1291-7).
169
Cooper TA
Regulation of chloride ion conductance during skeletal muscle development and in disease. Focus on "Chloride channelopathy in myotonic dystrophy resulting from loss of posttranscriptional regulation for CLCN1".
Am. J. Physiol., Cell Physiol.,
2007
Apr
, 292 (C1245-7).
170
Ignoul S
et al.
Human ClC-6 is a late endosomal glycoprotein that associates with detergent-resistant lipid domains.
PLoS ONE,
2007
, 2 (e474).
171
Botta A
et al.
Gene expression analysis in myotonic dystrophy: indications for a common molecular pathogenic pathway in DM1 and DM2.
Gene Expr.,
2007
, 13 (339-51).
172
Zifarelli G
et al.
CLC chloride channels and transporters: a biophysical and physiological perspective.
Rev. Physiol. Biochem. Pharmacol.,
2007
, 158 (23-76).
173
McKay OM
et al.
Activity-induced weakness in recessive myotonia congenita with a novel (696+1G>A) mutation.
Clin Neurophysiol,
2006
Sep
, 117 (2064-8).
174
Eguchi H
et al.
Acetazolamide acts directly on the human skeletal muscle chloride channel.
Muscle Nerve,
2006
Sep
, 34 (292-7).
175
Yu Z
et al.
Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model.
J. Clin. Invest.,
2006
Oct
, 116 (2663-72).
176
Aromataris EC
et al.
ClC-1 chloride channel: Matching its properties to a role in skeletal muscle.
Clin. Exp. Pharmacol. Physiol.,
2006
Nov
, 33 (1118-23).
177
Kuo HC
et al.
Novel mutations at carboxyl terminus of CIC-1 channel in myotonia congenita.
Acta Neurol. Scand.,
2006
May
, 113 (342-6).
178
Li WY
et al.
Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells.
Plant Cell Environ.,
2006
Jun
, 29 (1122-37).
179
Lobet S
et al.
Ion-binding properties of the ClC chloride selectivity filter.
EMBO J.,
2006
Jan
11
, 25 (24-33).
180
Pusch M
et al.
Channel or transporter? The CLC saga continues.
Exp. Physiol.,
2006
Jan
, 91 (149-52).
181
Nakamura A
et al.
Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.).
Plant Cell Physiol.,
2006
Jan
, 47 (32-42).
182
Lin MJ
et al.
Functional characterization of CLCN1 mutations in Taiwanese patients with myotonia congenita via heterologous expression.
Biochem. Biophys. Res. Commun.,
2006
Dec
29
, 351 (1043-7).
183
De Angeli A
et al.
The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles.
Nature,
2006
Aug
24
, 442 (939-42).
184
Wu W
et al.
Functional complementation of truncated human skeletal-muscle chloride channel (hClC-1) using carboxyl tail fragments.
Biochem. J.,
2006
Apr
1
, 395 (89-97).
185
Becq F
On the discovery and development of CFTR chloride channel activators.
Curr. Pharm. Des.,
2006
, 12 (471-84).
186
Bennetts B
et al.
Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels.
J. Biol. Chem.,
2005
Sep
16
, 280 (32452-8).
187
Hebeisen S
et al.
Carboxy-terminal truncations modify the outer pore vestibule of muscle chloride channels.
Biophys. J.,
2005
Sep
, 89 (1710-20).
188
Duffield MD
et al.
Zinc inhibits human ClC-1 muscle chloride channel by interacting with its common gating mechanism.
J. Physiol. (Lond.),
2005
Oct
1
, 568 (5-12).
189
Comes N
et al.
Differential expression of the human chloride channel genes in the trabecular meshwork under stress conditions.
Exp. Eye Res.,
2005
Jun
, 80 (801-13).
190
Picollo A
et al.
Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5.
Nature,
2005
Jul
21
, 436 (420-3).
191
Colding-Jørgensen E
Phenotypic variability in myotonia congenita.
Muscle Nerve,
2005
Jul
, 32 (19-34).
192
Wang X
et al.
Activity-dependent presynaptic regulation of quantal size at the mammalian neuromuscular junction in vivo.
J. Neurosci.,
2005
Jan
12
, 25 (343-51).
193
Papponen H
et al.
Regulated sarcolemmal localization of the muscle-specific ClC-1 chloride channel.
Exp. Neurol.,
2005
Jan
, 191 (163-73).
194
Pedersen TH
et al.
Increased excitability of acidified skeletal muscle: role of chloride conductance.
J. Gen. Physiol.,
2005
Feb
, 125 (237-46).
195
de Santiago JA
et al.
Quantitative analysis of the voltage-dependent gating of mouse parotid ClC-2 chloride channel.
J. Gen. Physiol.,
2005
Dec
, 126 (591-603).
196
Dunø M
et al.
Difference in allelic expression of the CLCN1 gene and the possible influence on the myotonia congenita phenotype.
Eur. J. Hum. Genet.,
2004
Sep
, 12 (738-43).
197
Chen L
et al.
Exon 17 skipping in CLCN1 leads to recessive myotonia congenita.
Muscle Nerve,
2004
May
, 29 (670-6).
198
Hebeisen S
et al.
The role of the carboxyl terminus in ClC chloride channel function.
J. Biol. Chem.,
2004
Mar
26
, 279 (13140-7).
199
Estévez R
et al.
Functional and structural conservation of CBS domains from CLC chloride channels.
J. Physiol. (Lond.),
2004
Jun
1
, 557 (363-78).
200
Yamamoto-Mizuma S
et al.
Altered properties of volume-sensitive osmolyte and anion channels (VSOACs) and membrane protein expression in cardiac and smooth muscle myocytes from Clcn3-/- mice.
J. Physiol. (Lond.),
2004
Jun
1
, 557 (439-56).
201
Jou SB
et al.
Novel CLCN1 mutations in Taiwanese patients with myotonia congenita.
J. Neurol.,
2004
Jun
, 251 (666-70).
202
Zhang XD
et al.
Expression of novel isoforms of the CIC-1 chloride channel in astrocytic glial cells in vitro.
Glia,
2004
Jul
, 47 (46-57).
203
Corry B
et al.
Conduction mechanisms of chloride ions in ClC-type channels.
Biophys. J.,
2004
Feb
, 86 (846-60).
204
Lamont PJ
et al.
An expansion in the ZNF9 gene causes PROMM in a previously described family with an incidental CLCN1 mutation.
J. Neurol. Neurosurg. Psychiatr.,
2004
Feb
, 75 (343).
205
Davies N
et al.
Chloride channel gene expression in the rabbit cornea.
Mol. Vis.,
2004
Dec
30
, 10 (1028-37).
206
Berg J
et al.
Truncated ClC-1 mRNA in myotonic dystrophy exerts a dominant-negative effect on the Cl current.
Neurology,
2004
Dec
28
, 63 (2371-5).
207
Simpson BJ
et al.
Characterization of three myotonia-associated mutations of the CLCN1 chloride channel gene via heterologous expression.
Hum. Mutat.,
2004
Aug
, 24 (185).
208
Idnurm A
et al.
Cryptococcus neoformans virulence gene discovery through insertional mutagenesis.
Eukaryotic Cell,
2004
Apr
, 3 (420-9).
209
Duffield M
et al.
Involvement of helices at the dimer interface in ClC-1 common gating.
J. Gen. Physiol.,
2003
Feb
, 121 (149-61).
210
Grunnet M
et al.
Characterization of two new dominant ClC-1 channel mutations associated with myotonia.
Muscle Nerve,
2003
Dec
, 28 (722-32).
211
Liantonio A
et al.
Structural requisites of 2-(p-chlorophenoxy)propionic acid analogues for activity on native rat skeletal muscle chloride conductance and on heterologously expressed CLC-1.
Br. J. Pharmacol.,
2003
Aug
, 139 (1255-64).
212
Estévez R
et al.
Conservation of chloride channel structure revealed by an inhibitor binding site in ClC-1.
Neuron,
2003
Apr
10
, 38 (47-59).
214
Colding-Jørgensen E
et al.
Decrement of compound muscle action potential is related to mutation type in myotonia congenita.
Muscle Nerve,
2003
Apr
, 27 (449-55).
215
Pusch M
et al.
Mechanisms of block of muscle type CLC chloride channels (Review).
Mol. Membr. Biol.,
2002 Oct-Dec
, 19 (285-92).
216
Warnstedt M
et al.
The myotonia congenita mutation A331T confers a novel hyperpolarization-activated gate to the muscle chloride channel ClC-1.
J. Neurosci.,
2002
Sep
1
, 22 (7462-70).
217
Kulka M
et al.
Mast cells express chloride channels of the ClC family.
Inflamm. Res.,
2002
Sep
, 51 (451-6).
218
Shirakawa T
et al.
A novel murine myotonia congenita without molecular defects in the ClC-1 and the SCN4A.
Neurology,
2002
Oct
8
, 59 (1091-4).
219
Wu FF
et al.
Novel CLCN1 mutations with unique clinical and electrophysiological consequences.
Brain,
2002
Nov
, 125 (2392-407).
220
Wu H
et al.
Activation of the MEF2 transcription factor in skeletal muscles from myotonic mice.
J. Clin. Invest.,
2002
May
, 109 (1327-33).
221
Zhang XD
et al.
[Effect of extracellular chloride concentration on deactivation kinetics of rat ClC-1 chloride channel]
,
2002
Jun
25
, 54 (196-200).
222
Charlet-B N
et al.
Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing.
Mol. Cell,
2002
Jul
, 10 (45-53).
223
Mankodi A
et al.
Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy.
Mol. Cell,
2002
Jul
, 10 (35-44).
224
Pierno S
et al.
Change of chloride ion channel conductance is an early event of slow-to-fast fibre type transition during unloading-induced muscle disuse.
Brain,
2002
Jul
, 125 (1510-21).
225
Ryan A
et al.
A novel alteration of muscle chloride channel gating in myotonia levior.
J. Physiol. (Lond.),
2002
Dec
1
, 545 (345-54).
226
Rogers CS
et al.
Functional repair of a mutant chloride channel using a trans-splicing ribozyme.
J. Clin. Invest.,
2002
Dec
, 110 (1783-9).
227
Liantonio A
et al.
Molecular requisites for drug binding to muscle CLC-1 and renal CLC-K channel revealed by the use of phenoxy-alkyl derivatives of 2-(p-chlorophenoxy)propionic acid.
Mol. Pharmacol.,
2002
Aug
, 62 (265-71).
228
Pusch M
Myotonia caused by mutations in the muscle chloride channel gene CLCN1.
Hum. Mutat.,
2002
Apr
, 19 (423-34).
229
Dołowy K
et al.
[Role and function of voltage-gated chloride channels of the CIC family and their defects leading to genetic diseases]
,
2002
, 56 (307-13).
230
Vandewalle A
[Function of the CLC chloride channels and their implication in human pathology]
,
2002
, 23 (113-8).
231
Kuchenbecker M
et al.
Topology of the human skeletal muscle chloride channel hClC-1 probed with hydrophilic epitope insertion.
Pflugers Arch.,
2001
Nov
, 443 (280-8).
232
Sasaki R
et al.
A novel CLCN1 mutation: P480T in a Japanese family with Thomsen's myotonia congenita.
Muscle Nerve,
2001
Mar
, 24 (357-63).
233
Prince LS
et al.
KGF alters gene expression in human airway epithelia: potential regulation of the inflammatory response.
Physiol. Genomics,
2001
Jul
17
, 6 (81-9).
234
Chen MF
et al.
Different fast-gate regulation by external Cl(-) and H(+) of the muscle-type ClC chloride channels.
J. Gen. Physiol.,
2001
Jul
, 118 (23-32).
235
Aromataris EC
et al.
Fast and slow gating of CLC-1: differential effects of 2-(4-chlorophenoxy) propionic acid and dominant negative mutations.
Mol. Pharmacol.,
2001
Jul
, 60 (200-8).
236
Pusch M
et al.
Mechanism of block of single protopores of the Torpedo chloride channel ClC-0 by 2-(p-chlorophenoxy)butyric acid (CPB).
J. Gen. Physiol.,
2001
Jul
, 118 (45-62).
237
Weinreich F
et al.
Pores formed by single subunits in mixed dimers of different CLC chloride channels.
J. Biol. Chem.,
2001
Jan
26
, 276 (2347-53).
238
Fahlke C
et al.
Residues lining the inner pore vestibule of human muscle chloride channels.
J. Biol. Chem.,
2001
Jan
19
, 276 (1759-65).
239
Rychkov GY
et al.
Interaction of hydrophobic anions with the rat skeletal muscle chloride channel ClC-1: effects on permeation and gating.
J. Physiol. (Lond.),
2001
Feb
1
, 530 (379-93).
240
Sun C
et al.
Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia.
Eur. J. Hum. Genet.,
2001
Dec
, 9 (903-9).
241
Bennetts B
et al.
Temperature dependence of human muscle ClC-1 chloride channel.
J. Physiol. (Lond.),
2001
Aug
15
, 535 (83-93).
242
Tieleman DP
et al.
Proline-induced hinges in transmembrane helices: possible roles in ion channel gating.
Proteins,
2001
Aug
1
, 44 (63-72).
243
Accardi A
et al.
Drastic reduction of the slow gate of human muscle chloride channel (ClC-1) by mutation C277S.
J. Physiol. (Lond.),
2001
Aug
1
, 534 (745-52).
244
Thakker RV
Molecular pathology of renal chloride channels in Dent's disease and Bartter's syndrome.
Exp. Nephrol.,
2000 Nov-Dec
, 8 (351-60).
245
Accardi A
et al.
Fast and slow gating relaxations in the muscle chloride channel CLC-1.
J. Gen. Physiol.,
2000
Sep
, 116 (433-44).
246
Pusch M
et al.
Pharmacological characterization of chloride channels belonging to the ClC family by the use of chiral clofibric acid derivatives.
Mol. Pharmacol.,
2000
Sep
, 58 (498-507).
247
Lin CW
et al.
Cysteine modification of a putative pore residue in ClC-0: implication for the pore stoichiometry of ClC chloride channels.
J. Gen. Physiol.,
2000
Oct
, 116 (535-46).
248
Pauli BU
et al.
Molecular characteristics and functional diversity of CLCA family members.
Clin. Exp. Pharmacol. Physiol.,
2000
Nov
, 27 (901-5).
249
Fahlke C
Molecular mechanisms of ion conduction in ClC-type chloride channels: lessons from disease-causing mutations.
Kidney Int.,
2000
Mar
, 57 (780-6).
250
Zhang J
et al.
Mechanism of inverted activation of ClC-1 channels caused by a novel myotonia congenita mutation.
J. Biol. Chem.,
2000
Jan
28
, 275 (2999-3005).
251
Zhang J
et al.
Functional consequences of chloride channel gene (CLCN1) mutations causing myotonia congenita.
Neurology,
2000
Feb
22
, 54 (937-42).
252
Kimura T
et al.
The expression of ion channel mRNAs in skeletal muscles from patients with myotonic muscular dystrophy.
Neurosci. Lett.,
2000
Dec
8
, 295 (93-6).
253
Nagamitsu S
et al.
A "dystrophic" variant of autosomal recessive myotonia congenita caused by novel mutations in the CLCN1 gene.
Neurology,
2000
Dec
12
, 55 (1697-703).
254
Qu Z
et al.
Anion permeation in Ca(2+)-activated Cl(-) channels.
J. Gen. Physiol.,
2000
Dec
, 116 (825-44).
255
de Diego C
et al.
Novel mutations in the muscle chloride channel CLCN1 gene causing myotonia congenita in Spanish families.
J. Neurol.,
1999
Sep
, 246 (825-9).
256
Petalcorin MI
et al.
Disruption of clh-1, a chloride channel gene, results in a wider body of Caenorhabditis elegans.
J. Mol. Biol.,
1999
Nov
26
, 294 (347-55).
257
Schriever AM
et al.
CLC chloride channels in Caenorhabditis elegans.
J. Biol. Chem.,
1999
Nov
26
, 274 (34238-44).
258
Enz R
et al.
Expression of the voltage-gated chloride channel ClC-2 in rod bipolar cells of the rat retina.
J. Neurosci.,
1999
Nov
15
, 19 (9841-7).
259
Brugnoni R
et al.
Identification of three novel mutations in the major human skeletal muscle chloride channel gene (CLCN1), causing myotonia congenita.
Hum. Mutat.,
1999
Nov
, 14 (447).
260
Pusch M
et al.
Chloride dependence of hyperpolarization-activated chloride channel gates.
J. Physiol. (Lond.),
1999
Mar
1
, 515 ( Pt 2) (341-53).
261
Lamb FS
et al.
Expression of CLCN voltage-gated chloride channel genes in human blood vessels.
J. Mol. Cell. Cardiol.,
1999
Mar
, 31 (657-66).
262
Saviane C
et al.
The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia.
J. Gen. Physiol.,
1999
Mar
, 113 (457-68).
263
Papponen H
et al.
Founder mutations and the high prevalence of myotonia congenita in northern Finland.
Neurology,
1999
Jul
22
, 53 (297-302).
264
Rosenbohm A
et al.
Regulation of the human skeletal muscle chloride channel hClC-1 by protein kinase C.
J. Physiol. (Lond.),
1999
Feb
1
, 514 ( Pt 3) (677-85).
265
Sasaki R
et al.
Novel chloride channel gene mutations in two unrelated Japanese families with Becker's autosomal recessive generalized myotonia.
Neuromuscul. Disord.,
1999
Dec
, 9 (587-92).
266
Rich MM
et al.
Altered gene expression in steroid-treated denervated muscle.
Neurobiol. Dis.,
1999
Dec
, 6 (515-22).
267
Chen MF
et al.
Role of phosphorylation and physiological state in the regulation of the muscular chloride channel ClC-1: a voltage-clamp study on isolated M. interosseus fibers.
Biochem. Biophys. Res. Commun.,
1999
Aug
2
, 261 (528-33).
268
Kawasaki E
et al.
Single-cell RT-PCR demonstrates expression of voltage-dependent chloride channels (ClC-1, ClC-2 and ClC-3) in outer hair cells of rat cochlea.
Brain Res.,
1999
Aug
14
, 838 (166-70).
269
Kürz LL
et al.
Identification of three cysteines as targets for the Zn2+ blockade of the human skeletal muscle chloride channel.
J. Biol. Chem.,
1999
Apr
23
, 274 (11687-92).
270
Pierno S
et al.
Aging-associated down-regulation of ClC-1 expression in skeletal muscle: phenotypic-independent relation to the decrease of chloride conductance.
FEBS Lett.,
1999
Apr
16
, 449 (12-6).
271
Kubisch C
et al.
ClC-1 chloride channel mutations in myotonia congenita: variable penetrance of mutations shifting the voltage dependence.
Hum. Mol. Genet.,
1998
Oct
, 7 (1753-60).
272
Rychkov GY
et al.
Permeation and block of the skeletal muscle chloride channel, ClC-1, by foreign anions.
J. Gen. Physiol.,
1998
May
, 111 (653-65).
273
Thakker RV
The role of renal chloride channel mutations in kidney stone disease and nephrocalcinosis.
Curr. Opin. Nephrol. Hypertens.,
1998
Jul
, 7 (385-8).
274
Hryciw DH
et al.
Relevance of the D13 region to the function of the skeletal muscle chloride channel, ClC-1.
J. Biol. Chem.,
1998
Feb
20
, 273 (4304-7).
275
Eggermont J
The exon-intron architecture of human chloride channel genes is not conserved.
Biochim. Biophys. Acta,
1998
Apr
29
, 1397 (156-60).
276
Fong P
et al.
Determinants of slow gating in ClC-0, the voltage-gated chloride channel of Torpedo marmorata.
Am. J. Physiol.,
1998
Apr
, 274 (C966-73).
277
Plassart-Schiess E
et al.
Novel muscle chloride channel (CLCN1) mutations in myotonia congenita with various modes of inheritance including incomplete dominance and penetrance.
Neurology,
1998
Apr
, 50 (1176-9).
278
Mastaglia FL
et al.
Dominantly inherited proximal myotonic myopathy and leukoencephalopathy in a family with an incidental CLCN1 mutation.
J. Neurol. Neurosurg. Psychiatr.,
1998
Apr
, 64 (543-7).
279
280
Chu S
et al.
Alternative mRNA splice variants of the rat ClC-2 chloride channel gene are expressed in lung: genomic sequence and organization of ClC-2.
Nucleic Acids Res.,
1997
Oct
15
, 25 (4153-9).
281
Chen MF
et al.
Chloride conductance in mouse muscle is subject to post-transcriptional compensation of the functional Cl- channel 1 gene dosage.
J. Physiol. (Lond.),
1997
Oct
1
, 504 ( Pt 1) (75-81).
282
Schnülle V
et al.
The mouse Clc1/myotonia gene: ETn insertion, a variable AATC repeat, and PCR diagnosis of alleles.
Mamm. Genome,
1997
Oct
, 8 (718-25).
283
Fahlke C
et al.
Mechanism of ion permeation in skeletal muscle chloride channels.
J. Gen. Physiol.,
1997
Nov
, 110 (551-64).
284
Fahlke C
et al.
A mutation in autosomal dominant myotonia congenita affects pore properties of the muscle chloride channel.
Proc. Natl. Acad. Sci. U.S.A.,
1997
Mar
18
, 94 (2729-34).
285
Rychkov GY
et al.
pH-dependent interactions of Cd2+ and a carboxylate blocker with the rat C1C-1 chloride channel and its R304E mutant in the Sf-9 insect cell line.
J. Physiol. (Lond.),
1997
Jun
1
, 501 ( Pt 2) (355-62).
286
Schmidt-Rose T
et al.
Transmembrane topology of a CLC chloride channel.
Proc. Natl. Acad. Sci. U.S.A.,
1997
Jul
8
, 94 (7633-8).
287
Oshima T
et al.
Expression of voltage-dependent chloride channels in the rat cochlea.
Hear. Res.,
1997
Jan
, 103 (63-8).
288
Kürz L
et al.
Probing the major skeletal muscle chloride channel with Zn2+ and other sulfhydryl-reactive compounds.
Pflugers Arch.,
1997
Jan
, 433 (357-63).
289
Fahlke C
et al.
Subunit stoichiometry of human muscle chloride channels.
J. Gen. Physiol.,
1997
Jan
, 109 (93-104).
290
Sloan Brown K
et al.
Inheritance of three distinct muscle chloride channel gene (CLCN1) mutations in a single recessive myotonia congenita family.
Neurology,
1997
Feb
, 48 (542-3).
291
Schmidt-Rose T
et al.
Reconstitution of functional voltage-gated chloride channels from complementary fragments of CLC-1.
J. Biol. Chem.,
1997
Aug
15
, 272 (20515-21).
292
Ludewig U
et al.
Inward rectification in ClC-0 chloride channels caused by mutations in several protein regions.
J. Gen. Physiol.,
1997
Aug
, 110 (165-71).
293
Ryan AM
et al.
Chromosomal assignment of six muscle-specific genes in cattle.
Anim. Genet.,
1997
Apr
, 28 (84-7).
294
Zhang J
et al.
Mutations in the human skeletal muscle chloride channel gene (CLCN1) associated with dominant and recessive myotonia congenita.
Neurology,
1996
Oct
, 47 (993-8).
295
Lorenz C
et al.
Heteromultimeric CLC chloride channels with novel properties.
Proc. Natl. Acad. Sci. U.S.A.,
1996
Nov
12
, 93 (13362-6).
296
Uchida S
[Structure and function of ClC chloride channels]
Nippon Rinsho,
1996
Mar
, 54 (667-71).
297
Uchida S
et al.
Chloride transport across kidney epithelia through CLC chloride channels.
,
1996
Jul
, 38 (285-9).
298
Mailänder V
et al.
Novel muscle chloride channel mutations and their effects on heterozygous carriers.
Am. J. Hum. Genet.,
1996
Feb
, 58 (317-24).
299
Rychkov GY
et al.
Concentration and pH dependence of skeletal muscle chloride channel ClC-1.
J. Physiol. (Lond.),
1996
Dec
1
, 497 ( Pt 2) (423-35).
300
Coca-Prados M
et al.
PKC-sensitive Cl- channels associated with ciliary epithelial homologue of pICln.
Am. J. Physiol.,
1995
Mar
, 268 (C572-9).
301
Jentsch TJ
et al.
Properties of voltage-gated chloride channels of the ClC gene family.
J. Physiol. (Lond.),
1995
Jan
, 482 (19S-25S).
302
Meyer-Kleine C
et al.
Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia.
Am. J. Hum. Genet.,
1995
Dec
, 57 (1325-34).
303
Lehmann-Horn F
et al.
Myotonia levior is a chloride channel disorder.
Hum. Mol. Genet.,
1995
Aug
, 4 (1397-402).
304
Fahlke C
et al.
An aspartic acid residue important for voltage-dependent gating of human muscle chloride channels.
Neuron,
1995
Aug
, 15 (463-72).
305
Gurnett CA
et al.
Absence of the skeletal muscle sarcolemma chloride channel ClC-1 in myotonic mice.
J. Biol. Chem.,
1995
Apr
21
, 270 (9035-8).
306
Hudson AJ
et al.
The skeletal muscle sodium and chloride channel diseases.
Brain,
1995
Apr
, 118 ( Pt 2) (547-63).
307
Jentsch TJ
et al.
Myotonias due to CLC-1 chloride channel mutations.
Soc. Gen. Physiol. Ser.,
1995
, 50 (149-59).
308
Huang ME
et al.
A voltage-gated chloride channel in the yeast Saccharomyces cerevisiae.
J. Mol. Biol.,
1994
Sep
30
, 242 (595-8).
309
Klocke R
et al.
Role of innervation, excitability, and myogenic factors in the expression of the muscular chloride channel ClC-1. A study on normal and myotonic muscle.
J. Biol. Chem.,
1994
Nov
4
, 269 (27635-9).
310
Schleef M
et al.
Subtractive cDNA cloning as a tool to analyse secondary effects of a muscle disease. Characterization of affected genes in the myotonic ADR mouse.
Neuromuscul. Disord.,
1994
May
, 4 (205-17).
311
Lorenz C
et al.
Genomic organization of the human muscle chloride channel CIC-1 and analysis of novel mutations leading to Becker-type myotonia.
Hum. Mol. Genet.,
1994
Jun
, 3 (941-6).
312
Meyer-Kleine C
et al.
A recurrent 14 bp deletion in the CLCN1 gene associated with generalized myotonia (Becker).
Hum. Mol. Genet.,
1994
Jun
, 3 (1015-6).
313
Pusch M
et al.
Low single channel conductance of the major skeletal muscle chloride channel, ClC-1.
Biophys. J.,
1994
Jan
, 66 (149-52).
314
Gronemeier M
et al.
Nonsense and missense mutations in the muscular chloride channel gene Clc-1 of myotonic mice.
J. Biol. Chem.,
1994
Feb
25
, 269 (5963-7).
315
Steinmeyer K
et al.
Multimeric structure of ClC-1 chloride channel revealed by mutations in dominant myotonia congenita (Thomsen).
EMBO J.,
1994
Feb
15
, 13 (737-43).
316
Koch MC
et al.
Evidence for genetic homogeneity in autosomal recessive generalised myotonia (Becker).
J. Med. Genet.,
1993
Nov
, 30 (914-7).
317
Wischmeyer E
et al.
Development of electrical myotonia in the ADR mouse: role of chloride conductance in myotubes and neonatal animals.
Neuromuscul. Disord.,
1993
Jul
, 3 (267-74).
318
Klocke R
et al.
Chromosomal mapping in the mouse of eight K(+)-channel genes representing the four Shaker-like subfamilies Shaker, Shab, Shaw, and Shal.
Genomics,
1993
Dec
, 18 (568-74).
319
Thiemann A
et al.
A chloride channel widely expressed in epithelial and non-epithelial cells.
Nature,
1992
Mar
5
, 356 (57-60).
320
Koch MC
et al.
The skeletal muscle chloride channel in dominant and recessive human myotonia.
Science,
1992
Aug
7
, 257 (797-800).
321
Steinmeyer K
et al.
Inactivation of muscle chloride channel by transposon insertion in myotonic mice.
Nature,
1991
Nov
28
, 354 (304-8).