Slo2
93 literature references associated to Slo2
1
Budelli G
et al.
SLO2 Channels Are Inhibited By All Divalent Cations That Activate SLO1 K+ Channels.
J. Biol. Chem.,
2016
Jan
28
, ().
2
Ferron L
Fragile X mental retardation protein controls ion channel expression and activity.
J. Physiol. (Lond.),
2016
Feb
10
, ().
3
Bansal V
et al.
Na(+) -activated K(+) channels in rat supraoptic neurons.
J. Neuroendocrinol.,
2016
Apr
19
, ().
4
Suzuki T
et al.
Hydrophobic interactions between the S5 segment and the pore helix stabilizes the closed state of Slo2.1 potassium channels.
Biochim. Biophys. Acta,
2016
Apr
, 1858 (783-92).
5
Gururaj S
et al.
Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation.
Neuropharmacology,
2016
Apr
, 103 (279-89).
6
Huffman JE
et al.
Rare and low-frequency variants and their association with plasma levels of fibrinogen, FVII, FVIII, and vWF.
Blood,
2015
Sep
10
, 126 (e19-29).
7
Ohba C
et al.
De novo KCNT1 mutations in early-onset epileptic encephalopathy.
Epilepsia,
2015
Sep
, 56 (e121-8).
8
Møller RS
et al.
Mutations in KCNT1 cause a spectrum of focal epilepsies.
Epilepsia,
2015
Sep
, 56 (e114-20).
9
Hite RK
et al.
Cryo-electron microscopy structure of the Slo2.2 Na(+)-activated K(+) channel.
Nature,
2015
Oct
5
, ().
10
Thomson SJ
et al.
Identification of the Intracellular Na+ Sensor in Slo2.1 Potassium Channels.
J. Biol. Chem.,
2015
Jun
5
, 290 (14528-35).
11
Boillot M
et al.
Genetic models of focal epilepsies.
J. Neurosci. Methods,
2015
Jun
11
, ().
12
Tomasello DL
et al.
Transcriptional Regulation of the Sodium-activated Potassium Channel SLICK (KCNT2) Promoter by Nuclear Factor-κB.
J. Biol. Chem.,
2015
Jul
24
, 290 (18575-83).
13
Bausch AE
et al.
The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice.
Learn. Mem.,
2015
Jul
, 22 (323-35).
14
Lu R
et al.
Slack channels expressed in sensory neurons control neuropathic pain in mice.
J. Neurosci.,
2015
Jan
21
, 35 (1125-35).
15
Mikati MA
et al.
Quinidine in the treatment of KCNT1-positive epilepsies.
Ann. Neurol.,
2015
Dec
, 78 (995-9).
16
Rizzetto R
et al.
Late sodium current (INaL) in pancreatic β-cells.
Pflugers Arch.,
2015
Aug
, 467 (1757-68).
17
Bearden D
et al.
Targeted treatment of migrating partial seizures of infancy with quinidine.
Ann. Neurol.,
2014
Sep
, 76 (457-61).
18
Martin HC
et al.
Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis.
Hum. Mol. Genet.,
2014
Jun
15
, 23 (3200-11).
19
Jia S
et al.
Zebrafish Cacna1fa is required for cone photoreceptor function and synaptic ribbon formation.
Hum. Mol. Genet.,
2014
Jun
1
, 23 (2981-94).
20
Brager DH
et al.
Channelopathies and Dendritic Dysfunction in Fragile X syndrome.
Brain Res. Bull.,
2014
Jan
23
, ().
21
Vanderver A
et al.
Identification of a novel de novo p.Phe932Ile KCNT1 mutation in a patient with leukoencephalopathy and severe epilepsy.
Pediatr. Neurol.,
2014
Jan
, 50 (112-4).
22
Qu J
et al.
Gene-wide tagging study of the association between KCNT1 polymorphisms and the susceptibility and efficacy of genetic generalized epilepsy in Chinese population.
CNS Neurosci Ther,
2014
Feb
, 20 (140-6).
23
De Filippo MR
et al.
Lack of pathogenic mutations in six patients with MMPSI.
Epilepsy Res.,
2014
Feb
, 108 (340-4).
24
Kim GE
et al.
Human slack potassium channel mutations increase positive cooperativity between individual channels.
Cell Rep,
2014
Dec
11
, 9 (1661-72).
25
Milligan CJ
et al.
KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine.
Ann. Neurol.,
2014
Apr
, 75 (581-90).
26
Liu P
et al.
SLO-2 potassium channel is an important regulator of neurotransmitter release in Caenorhabditis elegans.
Nat Commun,
2014
, 5 (5155).
27
Baulac S
Genetics advances in autosomal dominant focal epilepsies: focus on DEPDC5.
Prog. Brain Res.,
2014
, 213 (123-39).
28
Juang JM
et al.
Disease-targeted sequencing of ion channel genes identifies de novo mutations in patients with non-familial Brugada syndrome.
Sci Rep,
2014
, 4 (6733).
29
Tejada MA
et al.
Cell volume changes regulate slick (Slo2.1), but not slack (Slo2.2) K+ channels.
PLoS ONE,
2014
, 9 (e110833).
30
Fleming MR
et al.
Use of label-free optical biosensors to detect modulation of potassium channels by G-protein coupled receptors.
J Vis Exp,
2014
, (e51307).
31
Ishii A
et al.
A recurrent KCNT1 mutation in two sporadic cases with malignant migrating partial seizures in infancy.
Gene,
2013
Sep
10
, ().
32
Huang F
et al.
TMEM16C facilitates Na(+)-activated K+ currents in rat sensory neurons and regulates pain processing.
Nat. Neurosci.,
2013
Sep
, 16 (1284-90).
34
Lacaze E
et al.
De novo 15q13.3 microdeletion with cryptogenic West syndrome.
Am. J. Med. Genet. A,
2013
Oct
, 161 (2582-7).
35
Garg P
et al.
Structural basis of ion permeation gating in Slo2.1 K+ channels.
J. Gen. Physiol.,
2013
Nov
, 142 (523-42).
36
Zhang Z
et al.
SLO-2 isoforms with unique Ca ( 2+) - and voltage-dependence characteristics confer sensitivity to hypoxia in C. elegans.
Channels (Austin),
2013
May
1
, 7 (194-205).
37
Cervantes B
et al.
Identity, expression and functional role of the sodium-activated potassium current in vestibular ganglion afferent neurons.
Neuroscience,
2013
Jun
14
, 240 (163-75).
38
Liu J
et al.
Distinct sensitivity of slo1 channel proteins to ethanol.
Mol. Pharmacol.,
2013
Jan
, 83 (235-44).
39
Dhamija R
et al.
Novel de novo SCN2A mutation in a child with migrating focal seizures of infancy.
Pediatr. Neurol.,
2013
Dec
, 49 (486-8).
40
Hayashi M
et al.
Molecular basis of potassium channels in pancreatic duct epithelial cells.
Channels (Austin),
2013
Aug
20
, 7 ().
41
42
Zhang Y
et al.
Regulation of neuronal excitability by interaction of fragile X mental retardation protein with slack potassium channels.
J. Neurosci.,
2012
Oct
31
, 32 (15318-27).
43
Yan Y
et al.
Expression, purification and functional reconstitution of slack sodium-activated potassium channels.
J. Membr. Biol.,
2012
Nov
, 245 (667-74).
44
Garg P
et al.
Structure-activity relationship of fenamates as Slo2.1 channel activators.
Mol. Pharmacol.,
2012
Nov
, 82 (795-802).
45
Heron SE
et al.
Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy.
Nat. Genet.,
2012
Nov
, 44 (1188-90).
46
Barcia G
et al.
De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy.
Nat. Genet.,
2012
Nov
, 44 (1255-9).
48
Biton B
et al.
The antipsychotic drug loxapine is an opener of the sodium-activated potassium channel slack (Slo2.2).
J. Pharmacol. Exp. Ther.,
2012
Mar
, 340 (706-15).
49
de los Angeles Tejada M
et al.
PIP₂ modulation of Slick and Slack K⁺ channels.
Biochem. Biophys. Res. Commun.,
2012
Jul
27
, 424 (208-13).
50
Hayashi M
et al.
An intermediate-conductance Ca2+-activated K+ channel is important for secretion in pancreatic duct cells.
Am. J. Physiol., Cell Physiol.,
2012
Jul
15
, 303 (C151-9).
51
Li X
et al.
Extracellular chloride regulation of Kv2.1, contributor to the major outward Kv current in mammalian outer hair cells.
Am. J. Physiol., Cell Physiol.,
2012
Jan
, 302 (C296-306).
52
Dinardo MM
et al.
Splicing of the rSlo gene affects the molecular composition and drug response of Ca2+-activated K+ channels in skeletal muscle.
PLoS ONE,
2012
, 7 (e40235).
53
Poulsen AN
et al.
Neuronal fast activating and meningeal silent modulatory BK channel splice variants cloned from rat.
Pflugers Arch.,
2011
Jan
, 461 (65-75).
54
Wojtovich AP
et al.
SLO-2 is cytoprotective and contributes to mitochondrial potassium transport.
PLoS ONE,
2011
, 6 (e28287).
55
Nuwer MO
et al.
PKA-Induced Internalization of Slack KNa Channels Produces Dorsal Root Ganglion Neuron Hyperexcitability.
J. Neurosci.,
2010
Oct
20
, 30 (14165-72).
56
Jayasinghe ID
et al.
A new twist in cardiac muscle: dislocated and helicoid arrangements of myofibrillar z-disks in mammalian ventricular myocytes.
J. Mol. Cell. Cardiol.,
2010
May
, 48 (964-71).
57
Dai L
et al.
Activation of Slo2.1 channels by niflumic acid.
J. Gen. Physiol.,
2010
Mar
, 135 (275-95).
58
Zhang Z
et al.
The RCK2 domain uses a coordination site present in Kir channels to confer sodium sensitivity to Slo2.2 channels.
J. Neurosci.,
2010
Jun
2
, 30 (7554-62).
59
Lu S
et al.
The slack sodium-activated potassium channel provides a major outward current in olfactory neurons of Kv1.3-/- super-smeller mice.
J. Neurophysiol.,
2010
Jun
, 103 (3311-9).
60
Brown MR
et al.
Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack.
Nat. Neurosci.,
2010
Jul
, 13 (819-21).
61
Nuwer MO
et al.
cAMP-dependent kinase does not modulate the Slack sodium-activated potassium channel.
Neuropharmacology,
2009
Sep
, 57 (219-26).
62
Budelli G
et al.
Na+-activated K+ channels express a large delayed outward current in neurons during normal physiology.
Nat. Neurosci.,
2009
Jun
, 12 (745-50).
63
Chen H
et al.
The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels.
J. Neurosci.,
2009
Apr
29
, 29 (5654-65).
64
Tamsett TJ
et al.
NAD+ activates KNa channels in dorsal root ganglion neurons.
J. Neurosci.,
2009
Apr
22
, 29 (5127-34).
65
Fleming MR
et al.
Use of optical biosensors to detect modulation of Slack potassium channels by G protein-coupled receptors.
J. Recept. Signal Transduct. Res.,
2009
, 29 (173-81).
66
Brown MR
et al.
Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation.
J. Physiol. (Lond.),
2008
Nov
1
, 586 (5161-79).
67
Ruffin VA
et al.
The sodium-activated potassium channel Slack is modulated by hypercapnia and acidosis.
Neuroscience,
2008
Jan
24
, 151 (410-8).
68
Gao SB
et al.
Slack and Slick KNa channels are required for the depolarizing afterpotential of acutely isolated, medium diameter rat dorsal root ganglion neurons.
Acta Pharmacol. Sin.,
2008
Aug
, 29 (899-905).
69
Wallén P
et al.
Sodium-dependent potassium channels of a Slack-like subtype contribute to the slow afterhyperpolarization in lamprey spinal neurons.
J. Physiol. (Lond.),
2007
Nov
15
, 585 (75-90).
70
Yang B
et al.
Slack and Slick K(Na) channels regulate the accuracy of timing of auditory neurons.
J. Neurosci.,
2007
Mar
7
, 27 (2617-27).
71
Nanou E
et al.
A postsynaptic negative feedback mediated by coupling between AMPA receptors and Na+-activated K+ channels in spinal cord neurones.
Eur. J. Neurosci.,
2007
Jan
, 25 (445-50).
72
Berg AP
et al.
TrpC3/C7 and Slo2.1 are molecular targets for metabotropic glutamate receptor signaling in rat striatal cholinergic interneurons.
J. Neurosci.,
2007
Aug
15
, 27 (8845-56).
73
Yang B
et al.
Pharmacological activation and inhibition of Slack (Slo2.2) channels.
Neuropharmacology,
2006
Sep
, 51 (896-906).
74
Santi CM
et al.
Opposite regulation of Slick and Slack K+ channels by neuromodulators.
J. Neurosci.,
2006
May
10
, 26 (5059-68).
75
Paulais M
et al.
A Na+- and Cl- -activated K+ channel in the thick ascending limb of mouse kidney.
J. Gen. Physiol.,
2006
Feb
, 127 (205-15).
76
Sugino K
et al.
Electrical properties and fusion dynamics of in vitro membrane vesicles derived from separate parts of the contractile vacuole complex of Paramecium multimicronucleatum.
J. Exp. Biol.,
2005
Oct
, 208 (3957-69).
77
Bhattacharjee A
et al.
Localization of the Na+-activated K+ channel Slick in the rat central nervous system.
J. Comp. Neurol.,
2005
Mar
28
, 484 (80-92).
78
Kaczmarek LK
et al.
Regulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels.
Hear. Res.,
2005
Aug
, 206 (133-45).
79
Bhattacharjee A
et al.
For K+ channels, Na+ is the new Ca2+.
Trends Neurosci.,
2005
Aug
, 28 (422-8).
80
Zhang L
et al.
Direct binding of estradiol enhances Slack (sequence like a calcium-activated potassium channel) channels' activity.
Neuroscience,
2005
, 131 (275-82).
81
Uchino S
et al.
Slo2 sodium-activated K+ channels bind to the PDZ domain of PSD-95.
Biochem. Biophys. Res. Commun.,
2003
Oct
31
, 310 (1140-7).
82
Yuan A
et al.
The sodium-activated potassium channel is encoded by a member of the Slo gene family.
Neuron,
2003
Mar
6
, 37 (765-73).
83
Dryer SE
Molecular identification of the Na+-activated K+ channel.
Neuron,
2003
Mar
6
, 37 (727-8).
84
Wang SX
et al.
The cytoplasmic tail of large conductance, voltage- and Ca2+-activated K+ (MaxiK) channel is necessary for its cell surface expression.
J. Biol. Chem.,
2003
Jan
24
, 278 (2713-22).
85
Bhattacharjee A
et al.
Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP.
J. Neurosci.,
2003
Dec
17
, 23 (11681-91).
86
Ji G
et al.
Stretch-induced calcium release in smooth muscle.
J. Gen. Physiol.,
2002
Jun
, 119 (533-44).
87
Bhattacharjee A
et al.
Localization of the Slack potassium channel in the rat central nervous system.
J. Comp. Neurol.,
2002
Dec
16
, 454 (241-54).
88
Hamill OP
et al.
Molecular basis of mechanotransduction in living cells.
Physiol. Rev.,
2001
Apr
, 81 (685-740).
89
Ha TS
et al.
Functional characteristics of two BKCa channel variants differentially expressed in rat brain tissues.
Eur. J. Biochem.,
2000
Feb
, 267 (910-8).
90
Kunze WA
et al.
Contractile activity in intestinal muscle evokes action potential discharge in guinea-pig myenteric neurons.
J. Physiol. (Lond.),
1999
Jun
1
, 517 ( Pt 2) (547-61).
91
Joiner WJ
et al.
Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits.
Nat. Neurosci.,
1998
Oct
, 1 (462-9).
92
Morita T
et al.
Cloning and characterization of maxi K+ channel alpha-subunit in rabbit kidney.
Am. J. Physiol.,
1997
Oct
, 273 (F615-24).
93
Kent RL
et al.
Load responsiveness of protein synthesis in adult mammalian myocardium: role of cardiac deformation linked to sodium influx.
Circ. Res.,
1989
Jan
, 64 (74-85).