PubMed 16351883
Referenced in: none
Automatically associated channels: ClC2 , ClC4 , Kir1.1 , Kir6.1
Title: Development of renal function.
Authors: Gerald S Braun, Stephan M Huber
Journal, date & volume: Zoology (Jena), 2002 , 105, 341-54
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/16351883
Abstract
The mammalian metanephric kidney develops following a general principle of organogenesis of epithelial organs, i.e., along the tree-like structure of an arborizing ductal system (the ureteric bud and cortical collecting duct). In parallel, the proximal portions of the uriniferous tubule develop by mesenchymal-to-epithelial transition of the neighbouring mesenchyme. On one hand, vectorial transport systems in nephrogenesis should be functional at the onset of glomerular filtration in any of the newly formed nephron generations to prevent loss of salt, water and metabolites. On the other hand, developing nephron epithelia must serve the needs of organ-formation such as cell proliferation and fluid-secretion for morphogenic purposes. This review intends to summarize current data and concepts on the development of renal epithelial functions with an emphasis on ion channels. Current model systems are introduced, such as ureteric bud cell monolayer culture, in vitro nephron culture, HEK293 cell culture, and the dissection of tubular cells for direct analysis. The current data on the developmental expression and functions of ENaC Na(+) channels, the CFTR, ClC-2 Cl(ndash;) channels, L-type Ca(2+) channels, P2 purinoceptors, and the Kir6.1/SUR2, ROMK (Kir1.1), and Kv K(+) channels are presented.