Channelpedia

PubMed 12514171


Referenced in: none

Automatically associated channels: Kir1.1 , Kir4.1 , Kir5.1 , Kir6.2



Title: Phosphatidylinositol 4,5-bisphosphate (PIP2) modulation of ATP and pH sensitivity in Kir channels. A tale of an active and a silent PIP2 site in the N terminus.

Authors: Dirk Schulze, Tobias Krauter, Hariolf Fritzenschaft, Malle Soom, Thomas Baukrowitz

Journal, date & volume: J. Biol. Chem., 2003 Mar 21 , 278, 10500-5

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/12514171


Abstract
Phosphatidylinositol polyphosphates (PIPs) are potent modulators of Kir channels. Previous studies have implicated basic residues in the C terminus of Kir6.2 channels as interaction sites for the PIPs. Here we examined the role of the N terminus and identified an arginine (Arg-54) as a major determinant for PIP(2) modulation of ATP sensitivity in K(ATP) channels. Mutation of Arg-54 to the neutral glutamine (R54Q) and, in particular, to the negatively charged glutamate (R54E) impaired PIP(2) modulation of ATP inhibition, while mutation to lysine (R54K) had no effect. These data suggest that electrostatic interactions between PIP(2) and Arg-54 are an essential step for the modulation of ATP sensitivity. This N-terminal PIP(2) site is highly conserved in Kir channels with the exception of the pH-gated channels Kir1.1, Kir4.1, and Kir5.1 that contain a neutral residue at the corresponding positions. Introduction of an arginine at this position in Kir1.1 channels rendered the N-terminal PIP(2) site functional largely increasing the PIP(2) affinity. Moreover, Kir1.1 channels lose the ability to respond to physiological changes of the intracellular pH. These results explain the need of a silent N-terminal PIP(2) site in pH-gated channels and highlight the N terminus as an important region for PIP(2) modulation of Kir channel gating.