PubMed 12878206
Referenced in: none
Automatically associated channels: Kir1.1
Title: Negative charge at the consensus sequence for the serum- and glucocorticoid-inducible kinase, SGK1, determines pH sensitivity of the renal outer medullary K+ channel, ROMK1.
Authors: Monica Palmada, Hamdy M Embark, Amanda W Wyatt, Christoph Böhmer, Florian Lang
Journal, date & volume: Biochem. Biophys. Res. Commun., 2003 Aug 8 , 307, 967-72
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/12878206
Abstract
The renal outer medullary K(+)-channel ROMK1 is upregulated by the serum- and glucocorticoid-inducible kinase SGK1, an effect potentiated by Na(+)/H(+)-exchanger-regulating-factor NHERF2. SGK1 phosphorylates ROMK1 at serine44. To explore the role of SGK1 phosphorylation, serine44 was replaced by an alanine ([S44A]ROMK1) or an aspartate ([S44D]ROMK1). Wild type ROMK1, [S44A]ROMK1, and [S44D]ROMK1 were expressed in Xenopus oocytes with or without constitutively active [S422D]SGK1 and NHERF2, and K(+) current (I(KR)) determined. Cytosolic pH required for halfmaximal I(KR) (pK(a)) amounted to 7.05+/-0.01 for ROMK1, 7.07+/-0.02 for [S44A]ROMK1, and 6.83+/-0.05 for [S44D]ROMK1. Maximal I(KR) was [S44D]ROMK1>wild type ROMK1>[S44A]ROMK1. Coexpression of [S422D]SGK1 and NHERF2 enhanced the activity of ROMK1, [S44A]ROMK1 and [S44D]ROMK1, but led to a significant shift of pK(a) only in wild type ROMK1 (6.95+/-0.03). In conclusion, phosphorylation by SGK1 or introduction of a negative charge at serine44 shifts the pH sensitivity of the channel and contributes to the stimulation of maximal channel activity by the kinase.