Kv10.2
33 literature references associated to Kv10.2
1
Huang X
et al.
EAG2 potassium channel with evolutionarily conserved function as a brain tumor target.
Nat. Neurosci.,
2015
Sep
, 18 (1236-46).
2
Shimizu N
et al.
A sustained increase in the intracellular Ca²⁺ concentration induces proteolytic cleavage of EAG2 channel.
Int. J. Biochem. Cell Biol.,
2015
Feb
, 59 (126-34).
3
Macaulay EC
et al.
Retrotransposon hypomethylation in melanoma and expression of a placenta-specific gene.
PLoS ONE,
2014
, 9 (e95840).
4
Chuang CC
et al.
The punctate localization of rat Eag1 K+ channels is conferred by the proximal post-CNBHD region.
BMC Neurosci,
2014
, 15 (23).
5
Yang Y
et al.
Multistate structural modeling and voltage-clamp analysis of epilepsy/autism mutation Kv10.2-R327H demonstrate the role of this residue in stabilizing the channel closed state.
J. Neurosci.,
2013
Oct
16
, 33 (16586-93).
6
Kazmierczak M
et al.
External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor.
J. Gen. Physiol.,
2013
Jun
, 141 (721-35).
7
Veeramah KR
et al.
Exome sequencing reveals new causal mutations in children with epileptic encephalopathies.
Epilepsia,
2013
Jul
, 54 (1270-81).
8
Hayashi M
et al.
Molecular basis of potassium channels in pancreatic duct epithelial cells.
Channels (Austin),
2013
Aug
20
, 7 ().
9
[Three-dimensional structure of human Kv10.2 ion channel studied by single particle electron microscopy and molecular modeling].
Bioorg. Khim.,
2012 Mar-Apr
, 38 (177-84).
10
de Oliveira RM
et al.
Eag1, Eag2, and SK3 potassium channel expression in the rat hippocampus after global transient brain ischemia.
J. Neurosci. Res.,
2012
Mar
, 90 (632-40).
11
Hayashi M
et al.
An intermediate-conductance Ca2+-activated K+ channel is important for secretion in pancreatic duct cells.
Am. J. Physiol., Cell Physiol.,
2012
Jul
15
, 303 (C151-9).
12
Huang X
et al.
Voltage-gated potassium channel EAG2 controls mitotic entry and tumor growth in medulloblastoma via regulating cell volume dynamics.
Genes Dev.,
2012
Aug
15
, 26 (1780-96).
13
Macaulay EC
et al.
Hypomethylation of functional retrotransposon-derived genes in the human placenta.
Mamm. Genome,
2011
Dec
, 22 (722-35).
14
Heck A
et al.
Statistical epistasis and functional brain imaging support a role of voltage-gated potassium channels in human memory.
PLoS ONE,
2011
, 6 (e29337).
15
Martin S
et al.
Eag1, Eag2 and Kcnn3 gene brain expression of isolated reared rats.
,
2010
Jul
21
, ().
16
Lörinczi E
et al.
The voltage dependence of hEag currents is not determined solely by membrane-spanning domains.
Eur. Biophys. J.,
2009
Mar
, 38 (279-84).
17
Wray D
Intracellular regions of potassium channels: Kv2.1 and heag.
Eur. Biophys. J.,
2009
Mar
, 38 (285-92).
18
Zhang X
et al.
Divalent cations slow activation of EAG family K+ channels through direct binding to S4.
Biophys. J.,
2009
Jul
8
, 97 (110-20).
19
Stevens L
et al.
Roles of surface residues of intracellular domains of heag potassium channels.
Eur. Biophys. J.,
2009
Apr
, 38 (523-32).
20
Wadhwa S
et al.
Differential expression of potassium ion channels in human renal cell carcinoma.
,
2009
, 41 (251-7).
21
Feng Q
et al.
DNA methylation in tumor and matched normal tissues from non-small cell lung cancer patients.
Cancer Epidemiol. Biomarkers Prev.,
2008
Mar
, 17 (645-54).
22
Jow GM
et al.
Differential localization of rat Eag1 and Eag2 potassium channels in the retina.
Neurosci. Lett.,
2008
Jan
24
, 431 (12-6).
23
Bracey K
et al.
Tubulin as a binding partner of the heag2 voltage-gated potassium channel.
J. Membr. Biol.,
2008
Apr
, 222 (115-25).
24
Mareschi K
et al.
Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types.
Exp. Hematol.,
2006
Nov
, 34 (1563-72).
25
Ju M
et al.
Molecular regions responsible for differences in activation between heag channels.
Biochem. Biophys. Res. Commun.,
2006
Apr
21
, 342 (1088-97).
26
Jeng CJ
et al.
Differential localization of rat Eag1 and Eag2 K+ channels in hippocampal neurons.
Neuroreport,
2005
Feb
28
, 16 (229-33).
27
Wray D
The roles of intracellular regions in the activation of voltage-dependent potassium channels.
Eur. Biophys. J.,
2004
May
, 33 (194-200).
28
Gessner G
et al.
Molecular determinants for high-affinity block of human EAG potassium channels by antiarrhythmic agents.
Mol. Pharmacol.,
2004
May
, 65 (1120-9).
29
Schönherr R
et al.
Functional distinction of human EAG1 and EAG2 potassium channels.
FEBS Lett.,
2002
Mar
13
, 514 (204-8).
30
Ju M
et al.
Molecular identification and characterisation of the human eag2 potassium channel.
FEBS Lett.,
2002
Jul
31
, 524 (204-10).
31
Ludwig J
et al.
Cloning and functional expression of rat eag2, a new member of the ether-à-go-go family of potassium channels and comparison of its distribution with that of eag1.
Mol. Cell. Neurosci.,
2000
Jul
, 16 (59-70).
32
Saganich MJ
et al.
Cloning of components of a novel subthreshold-activating K(+) channel with a unique pattern of expression in the cerebral cortex.
J. Neurosci.,
1999
Dec
15
, 19 (10789-802).
33
Frings S
et al.
Characterization of ether-à-go-go channels present in photoreceptors reveals similarity to IKx, a K+ current in rod inner segments.
J. Gen. Physiol.,
1998
Apr
, 111 (583-99).