PubMed 26283144

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Nav1 , Nav1.5 , Slo1

Title: Direct Measurement of Cardiac Na+ Channel Conformations Reveals Molecular Pathologies of Inherited Mutations.

Authors: Zoltan Varga, Wandi Zhu, Angela R Schubert, Jennifer L Pardieck, Arie Krumholz, Eric J Hsu, Mark A Zaydman, Jianmin Cui, Jonathan R Silva

Journal, date & volume: Circ Arrhythm Electrophysiol, 2015 Aug 17 , ,

PubMed link:

Dysregulation of voltage-gated cardiac Na(+) channels (NaV1.5) by inherited mutations, disease-linked remodeling, and drugs causes arrhythmias. The molecular mechanisms whereby the NaV1.5 voltage-sensing domains (VSDs) are perturbed to pathologically or therapeutically modulate Na(+) current (INa) have not been specified. Our aim was to correlate INa kinetics with conformational changes within the 4 (DI-DIV) VSDs to define molecular mechanisms of NaV1.5 modulation.Four NaV1.5 constructs were created to track the voltage-dependent kinetics of conformational changes within each VSD, using voltage-clamp fluorometry. Each VSD displayed unique kinetics, consistent with distinct roles in determining INa. In particular, DIII-VSD deactivation kinetics were modulated by depolarizing pulses with durations in the intermediate time domain that modulates late INa. We then used the DII-VSD construct to probe the molecular pathology of 2 Brugada syndrome mutations (A735V and G752R). A735V shifted DII-VSD voltage dependence to depolarized potentials, whereas G752R significantly slowed DII-VSD kinetics. Both mutations slowed INa activation, although DII-VSD activation occurred at higher potentials (A735V) or at later times (G752R) than ionic current activation, indicating that the DII-VSD allosterically regulates the rate of INa activation and myocyte excitability.Our results reveal novel mechanisms whereby the NaV1.5 VSDs regulate channel activation and inactivation. The ability to distinguish distinct molecular mechanisms of proximal Brugada syndrome mutations demonstrates the potential of these methods to reveal how inherited mutations, post-translational modifications, and antiarrhythmic drugs alter NaV1.5 at the molecular level.