PubMed 20539757
Referenced in: none
Automatically associated channels: Kir2.3 , Kv2.1 , Nav1.5
Title: Multiple loss-of-function mechanisms contribute to SCN5A-related familial sick sinus syndrome.
Authors: Junhong Gui, Tao Wang, Richard P O Jones, Dorothy Trump, Thomas Zimmer, Ming Lei
Journal, date & volume: PLoS ONE, 2010 , 5, e10985
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/20539757
Abstract
To identify molecular mechanisms underlying SCN5A-related sick sinus syndrome (SSS), a rare type of SSS, in parallel experiments we elucidated the electrophysiological properties and the cell surface localization of thirteen human Na(v)1.5 (hNa(v)1.5) mutant channels previously linked to this disease.Mutant hNa(v)1.5 channels expressed by HEK293 cells and Xenopus oocytes were investigated by whole-cell patch clamp and two-microelectrode voltage clamp, respectively. HEK293 cell surface biotinylation experiments quantified the fraction of correctly targeted channel proteins. Our data suggested three distinct mutant channel subtypes: Group 1 mutants (L212P, P1298L, DelF1617, R1632H) gave peak current densities and cell surface targeting indistinguishable from wild-type hNa(v)1.5. Loss-of-function of these mutants resulted from altered channel kinetics, including a negative shift of steady-state inactivation and a reduced voltage dependency of open-state inactivation. Group 2 mutants (E161K, T220I, D1275N) gave significantly reduced whole-cell currents due to impaired cell surface localization (D1275N), altered channel properties at unchanged cell surface localization (T220I), or a combination of both (E161K). Group 3 mutant channels were non-functional, due to an almost complete lack of protein at the plasma membrane (T187I, W1421X, K1578fs/52, R1623X) or a probable gating/permeation defect with normal surface localisation (R878C, G1408R).This study indicates that multiple molecular mechanisms, including gating abnormalities, trafficking defects, or a combination of both, are responsible for SCN5A-related familial SSS.