PubMed 16643374
Referenced in: none
Automatically associated channels: Nav1.5
Title: Inherited conduction system abnormalities--one group of diseases, many genes.
Authors: Cordula M Wolf, Charles I Berul
Journal, date & volume: J. Cardiovasc. Electrophysiol., 2006 Apr , 17, 446-55
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/16643374
Abstract
The cardiac conduction system can be anatomically, developmentally, and molecularly distinguished from the working myocardium. Abnormalities in cardiac conduction can occur due to a variety of factors, including developmental and congenital defects, acquired injury or ischemia of portions of the conduction system, or less commonly due to inherited diseases that alter cardiac conduction system function. So called "idiopathic" conduction system degeneration may have familial clustering, and therefore is consistent with a hereditary basis. This "Molecular Perspectives" will highlight several diverse mechanisms of isolated conduction system disease as well as conduction system degeneration associated with other cardiac and non-cardiac disorders. The first part of this review focuses on channelopathies associated with conduction system disease. Human genetic studies have identified mutations in the sodium channel SCN5A gene causing tachyarrhythmia disorders, as well as progressive cardiac conduction system diseases, or overlapping syndromes. Next, the importance of embryonic developmental genes such as homeobox and T-box transcription factors are highlighted in conduction system development and function. Conduction system diseases associated with multisystem disorders, such as muscular and myotonic dystrophies, will be described. Last, a new glycogen storage cardiomyopathy associated with ventricular preexcitation and progressive conduction system degeneration will be reviewed. There are a myriad of mutations identified in genes encoding cardiac transcription factors, ion channels, gap junctions, energy metabolism regulators, lamins and other structural proteins. Understanding of the molecular and ionic mechanisms underlying cardiac conduction is essential for the appreciation of the pathogenesis of conduction abnormalities in structurally normal and altered hearts.