Channelpedia

PubMed 25341504


Referenced in: none

Automatically associated channels: Cav1.2 , Nav1.5



Title: Complex Brugada syndrome inheritance in a family harbouring compound SCN5A and CACNA1C mutations.

Authors: Delphine M Béziau, Julien Barc, Thomas O'Hara, Laurianne Le Gloan, Mohamed Yassine Amarouch, Aude Solnon, Dominique Pavin, Simon Lecointe, Patricia Bouillet, Jean-Baptiste Gourraud, Pascale Guicheney, Isabelle Denjoy, Richard Redon, Philippe Mabo, Hervé Le Marec, Gildas Loussouarn, Florence Kyndt, Jean-Jacques Schott, Vincent Probst, Isabelle Baró

Journal, date & volume: Basic Res. Cardiol., 2014 , 109, 446

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/25341504


Abstract
Brugada syndrome (BrS) is characterized by ST-segment elevation in the right precordial leads and is associated with increased risk of sudden cardiac death. We have recently reported families with BrS and SCN5A mutations where some affected members do not carry the familial mutation. We evaluated the involvement of additional genetic determinants for BrS in an affected family. We identified three distinct gene variants within a family presenting BrS (5 individuals), cardiac conduction defects (CCD, 3 individuals) and shortened QT interval (4 individuals). The first mutation is nonsense, p.Q1695*, lying within the SCN5A gene, which encodes for NaV1.5, the α-subunit of the cardiac Na(+) channel. The second mutation is missense, p.N300D, and alters the CACNA1C gene, which encodes the α-subunit CaV1.2 of the L-type cardiac Ca(2+) channel. The SCN5A mutation strictly segregates with CCD. Four out of the 5 BrS patients carry the CACNA1C variant, and three of them present shortened QT interval. One of the BrS patients carries none of these mutations but a rare variant located in the ABCC9 gene as well as his asymptomatic mother. Patch-clamp studies identified a loss-of-function of the mutated CaV1.2 channel. Western-blot experiments showed a global expression defect while increased mobility of CaV1.2 channels on cell surface was revealed by FRAP experiments. Finally, computer simulations of the two mutations recapitulated patient phenotypes. We report a rare CACNA1C mutation as causing BrS and/or shortened QT interval in a family also carrying a SCN5A stop mutation, but which does not segregate with BrS. This study underlies the complexity of BrS inheritance and its pre-symptomatic genetic screening interpretation.