PubMed 25772296

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Nav1 , Nav1.1 , Nav1.2 , Nav1.3 , Nav1.5 , Nav1.6 , Nav2 , Nav2.1

Title: Contribution of sodium channel neuronal isoform Nav1.1 to late sodium current in ventricular myocytes from failing hearts.

Authors: Sudhish Mishra, Vitaliy Reznikov, Victor A Maltsev, Nidas A Undrovinas, Hani N Sabbah, Albertas Undrovinas

Journal, date & volume: J. Physiol. (Lond.), 2015 Mar 15 , 593, 1409-27

PubMed link:

Late Na(+) current (INaL) contributes to action potential remodelling and Ca(2+)/Na(+) changes in heart failure. The molecular identity of INaL remains unclear. The contributions of different Na(+) channel isoforms, apart from the cardiac isoform, remain unknown. We discovered and characterized a substantial contribution of neuronal isoform Nav1.1 to INaL. This new component is physiologically relevant to the control of action potential shape and duration, as well as to cell Ca(2+) dynamics, especially in heart failure.Late Na(+) current (INaL) contributes to action potential (AP) duration and Ca(2+) handling in cardiac cells. Augmented INaL was implicated in delayed repolarization and impaired Ca(2+) handling in heart failure (HF). We tested if Na(+) channel (Nav) neuronal isoforms contribute to INaL and Ca(2+) cycling defects in HF in 17 dogs in which HF was achieved via sequential coronary artery embolizations. Six normal dogs served as control. Transient Na(+) current (INaT ) and INaL in left ventricular cardiomyocytes (VCMs) were recorded by patch clamp while Ca(2+) dynamics was monitored using Fluo-4. Virally delivered short interfering RNA (siRNA) ensured Nav1.1 and Nav1.5 post-transcriptional silencing. The expression of six Navs was observed in failing VCMs as follows: Nav1.5 (57.3%) > Nav1.2 (15.3%) > Nav1.1 (11.6%) > Nav2.1 (10.7%) > Nav1.3 (4.6%) > Nav1.6 (0.5%). Failing VCMs showed up-regulation of Nav1.1 expression, but reduction of Nav1.6 mRNA. A similar Nav expression pattern was found in samples from human hearts with ischaemic HF. VCMs with silenced Nav1.5 exhibited residual INaT and INaL (∼30% of control) with rightwardly shifted steady-state activation and inactivation. These currents were tetrodotoxin sensitive but resistant to MTSEA, a specific Nav1.5 blocker. The amplitude of the tetrodotoxin-sensitive INaL was 0.1709 ± 0.0299 pA pF(-1) (n = 7 cells) and the decay time constant was τ = 790 ± 76 ms (n = 5). This INaL component was lacking in VCMs with a silenced Nav1.1 gene, indicating that, among neuronal isoforms, Nav1.1 provides the largest contribution to INaL. At -10 mV this contribution is ∼60% of total INaL. Our further experimental and in silico examinations showed that this new Nav1.1 INaL component contributes to Ca(2+) accumulation in failing VCMs and modulates AP shape and duration. In conclusion, we have discovered an Nav1.1-originated INaL component in dog heart ventricular cells. This component is physiologically relevant to controlling AP shape and duration, as well as to cell Ca(2+) dynamics.