PubMed 9765280

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Kir2.1 , Kir2.2 , Kir2.3 , Kir2.4 , Kir3.1 , Kir3.2 , Kir3.3 , Kir3.4 , Kv1.4

Title: Identification of native atrial G-protein-regulated inwardly rectifying K+ (GIRK4) channel homomultimers.

Authors: S Corey, D E Clapham

Journal, date & volume: J. Biol. Chem., 1998 Oct 16 , 273, 27499-504

PubMed link:

G-protein-regulated inwardly rectifying K+ (GIRK) channels play critical inhibitory roles throughout the nervous system, heart, and pancreas. They are believed to be heterotetramers consisting of GIRK1 (Kir3.1) and either GIRK2 (Kir3.2), GIRK3 (Kir3.3), or GIRK4 (Kir3.4) subunits. The GIRK1 subunit is hypothesized to be critical to form GIRK channels with normal channel kinetics based on heterologous expression studies. However, GIRK2 and GIRK3 proteins are present in areas of the brain where no GIRK1 has been detected. Here we demonstrate that GIRK tetramers lacking GIRK1 can be purified from bovine heart atria. We have found that only half of GIRK4 is purified as the GIRK1-GIRK4 heterotetramer, whereas the remaining GIRK4 forms a high molecular weight, SDS-resistant complex that does not contain GIRK1. These GIRK4 complexes, most likely GIRK4 homotetramers, were previously not seen because of their aberrant migration on SDS-polyacrylamide gels. We propose that all of GIRK1 and half of GIRK4 proteins in atria combine to form the heterotetramer IKACh, whereas the remaining GIRK4 forms a novel tetrameric complex. GIRK4 homotetramers form channels with unusual single channel behavior, and their contribution to native currents requires further investigation.