PubMed 15322252
Referenced in: none
Automatically associated channels: Kir3.1 , Kir3.4
Title: Identification of the P2Y(12) receptor in nucleotide inhibition of exocytosis from bovine chromaffin cells.
Authors: Steven J Ennion, Andrew D Powell, Elizabeth P Seward
Journal, date & volume: Mol. Pharmacol., 2004 Sep , 66, 601-11
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/15322252
Abstract
Nucleotides are released from bovine chromaffin cells and take part in a feedback loop to inhibit further exocytosis. To identify the nucleotide receptors involved, we measured the effects of a range of exogenous nucleotides and related antagonists on voltage-operated calcium currents (I(Ca)), intracellular calcium concentration ([Ca(2+)](i)), and membrane capacitance changes. In comparative parallel studies, we also cloned the bovine P2Y(12) receptor from chromaffin cells and determined its properties by coexpression in Xenopus laevis oocytes with inward-rectifier potassium channels made up of Kir3.1 and Kir3.4. In both systems, the agonist order of potency was essentially identical (2-methylthio-ATP approximately 2-methylthio-ADP >> ATP approximately ADP > UDP). alphabeta-Methylene-ATP and adenosine were inactive. UTP inhibited I(Ca) in chromaffin cells (pEC(50) = 4.89 +/- 0.11) but was essentially inactive at the cloned P2Y(12) receptor. The relatively nonselective P2 antagonist pyridoxal-phosphate-6-azophenyl-2',4' disulfonic acid blocked nucleotide responses in both chromaffin cells and X. laevis oocytes, whereas the P2Y(12)- and P2Y(13)-selective antagonist N(6)-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-beta,gamma-dichloromethylene ATP (ARC69931MX) blocked responses to ATP in both chromaffin cells and X. laevis oocytes but not to UTP in chromaffin cells. These results identify the P2Y(12) purine receptor as a key component of the nucleotide inhibitory pathway and also demonstrate the involvement of a UTP-sensitive G(i/o) -coupled pyrimidine receptor.