Channelpedia

PubMed 10559393


Referenced in: none

Automatically associated channels: ClC1 , ClC2 , ClC4



Title: Expression of the voltage-gated chloride channel ClC-2 in rod bipolar cells of the rat retina.

Authors: R Enz, B J Ross, G R Cutting

Journal, date & volume: J. Neurosci., 1999 Nov 15 , 19, 9841-7

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/10559393


Abstract
Voltage-gated chloride channels (ClC) are highly conserved during evolution and appear to participate in a variety of physiological functions. Recently, ClC-2 was proposed to play a role in stabilizing the chloride equilibrium potential near or below the resting membrane potential in neurons expressing ligand-gated chloride channels. Because rod bipolar cells in mammalian retina express three forms of inhibitory ligand-gated chloride channels, we decided to study ClC-2 localization and function in the rat retina. RNA encoding ClC-1, -2, -3, -4, and -5 was detected by reverse transcription-PCR in the rat retina. ClC-2-specific antibodies identified protein on cell bodies and in synaptic layers. Double-immunofluorescence staining revealed that intense ClC-2 immunoreactivity colocalized with PKC-stained rod bipolar cells. Patch-clamp experiments performed with individual rod bipolar cells demonstrated the presence of a time-dependent, inwardly rectified current activated at hyperpolarizing membrane potentials. This current demonstrated selectivity for different anions (Cl(-) > I(-) > gluconate), was inhibited by Cd(2+), and was minimally reduced by 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid. These features are consistent with currents generated by ClC-2 channels. Our data indicate that functional ClC-2 channels are present in retinal rod bipolar cells and support a role for ClC-2 in maintaining Cl(-) homeostasis in neurons with ligand-gated chloride channels.