Channelpedia

PubMed 19786585


Referenced in Channelpedia wiki pages of: none

Automatically associated channels: ClvC1 , ClvC4 , Slo1



Title: Comparison of regulated passive membrane conductance in action potential-firing fast- and slow-twitch muscle.

Authors: Thomas Holm Pedersen, William Alexander Macdonald, Frank Vinzenco de Paoli, Iman Singh Gurung, Ole Baekgaard Nielsen

Journal, date & volume: J. Gen. Physiol., 2009 Oct , 134, 323-37

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/19786585


Abstract
In several pathological and experimental conditions, the passive membrane conductance of muscle fibers (G(m)) and their excitability are inversely related. Despite this capacity of G(m) to determine muscle excitability, its regulation in active muscle fibers is largely unexplored. In this issue, our previous study (Pedersen et al. 2009. J. Gen. Physiol. doi:10.1085/jgp.200910291) established a technique with which biphasic regulation of G(m) in action potential (AP)-firing fast-twitch fibers of rat extensor digitorum longus muscles was identified and characterized with temporal resolution of seconds. This showed that AP firing initially reduced G(m) via ClC-1 channel inhibition but after approximately 1,800 APs, G(m) rose substantially, causing AP excitation failure. This late increase of G(m) reflected activation of ClC-1 and K(ATP) channels. The present study has explored regulation of G(m) in AP-firing slow-twitch fibers of soleus muscle and compared it to G(m) dynamics in fast-twitch fibers. It further explored aspects of the cellular signaling that conveyed regulation of G(m) in AP-firing fibers. Thus, in both fiber types, AP firing first triggered protein kinase C (PKC)-dependent ClC-1 channel inhibition that reduced G(m) by approximately 50%. Experiments with dantrolene showed that AP-triggered SR Ca(2+) release activated this PKC-mediated ClC-1 channel inhibition that was associated with reduced rheobase current and improved function of depolarized muscles, indicating that the reduced G(m) enhanced muscle fiber excitability. In fast-twitch fibers, the late rise in G(m) was accelerated by glucose-free conditions, whereas it was postponed when intermittent resting periods were introduced during AP firing. Remarkably, elevation of G(m) was never encountered in AP-firing slow-twitch fibers, even after 15,000 APs. These observations implicate metabolic depression in the elevation of G(m) in AP-firing fast-twitch fibers. It is concluded that regulation of G(m) is a general phenomenon in AP-firing muscle, and that differences in G(m) regulation may contribute to the different phenotypes of fast- and slow-twitch muscle.