Channelpedia

PubMed 10051520


Referenced in: none

Automatically associated channels: ClC1 , ClC4



Title: The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia.

Authors: C Saviane, F Conti, M Pusch

Journal, date & volume: J. Gen. Physiol., 1999 Mar , 113, 457-68

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/10051520


Abstract
Single-channel recordings of the currents mediated by the muscle Cl- channel, ClC-1, expressed in Xenopus oocytes, provide the first direct evidence that this channel has two equidistant open conductance levels like the Torpedo ClC-0 prototype. As for the case of ClC-0, the probabilities and dwell times of the closed and conducting states are consistent with the presence of two independently gated pathways with approximately 1.2 pS conductance enabled in parallel via a common gate. However, the voltage dependence of the common gate is different and the kinetics are much faster than for ClC-0. Estimates of single-channel parameters from the analysis of macroscopic current fluctuations agree with those from single-channel recordings. Fluctuation analysis was used to characterize changes in the apparent double-gate behavior of the ClC-1 mutations I290M and I556N causing, respectively, a dominant and a recessive form of myotonia. We find that both mutations reduce about equally the open probability of single protopores and that mutation I290M yields a stronger reduction of the common gate open probability than mutation I556N. Our results suggest that the mammalian ClC-homologues have the same structure and mechanism proposed for the Torpedo channel ClC-0. Differential effects on the two gates that appear to modulate the activation of ClC-1 channels may be important determinants for the different patterns of inheritance of dominant and recessive ClC-1 mutations.