PubMed 18035046
Referenced in: none
Automatically associated channels: ClC1 , ClC4
Title: Functional studies of the effect of NO donor on human CLCN1 polymorphism/mutants expressed in Xenopus laevis oocytes.
Authors: Min-Jon Lin, Ren-Yu Huang, Huichin Pan, Kuang-Ming Hsiao
Journal, date & volume: Biochem. Biophys. Res. Commun., 2008 Jan 25 , 365, 724-8
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/18035046
Abstract
In this study, we investigated the effect of NO donor, diethylamine/nitric oxide (DEA/NO), on the electrophysiological behavior of human skeletal muscle chloride channel (CLCN1). The wild-type and variants of CLCN1, including one polymorphism (P727L) and four mutants (T631I, D644G, G482R, and S471F), were expressed in Xenopus oocytes and the ionic current was measured by two-electrode voltage-clamp method. Our results revealed that there is no significant difference in the current-voltage relationships and half-voltage values of open probability between wild-type and variants of CLCN1 except for G482R. Application of the DEA-NO (0.1mM) significantly increases the channel conductance of wild-type, T631I, D644G, and S471F, but not P727L. This indicates that P727L polymorphism causes loss of sensitivity of CLCN1 to the DEA/NO treatment, which could be due to a conformational change caused by proline substitution. The data suggest that the polymorphic changes may affect the function of CLCN1 in response to the treatment of chemical compounds.