PubMed 15158917
Referenced in: none
Automatically associated channels: ClC4 , ClC5
Title: Calcium phosphate and calcium oxalate crystal handling is dependent upon CLC-5 expression in mouse collecting duct cells.
Authors: J A Sayer, G Carr, N L Simmons
Journal, date & volume: Biochim. Biophys. Acta, 2004 May 24 , 1689, 83-90
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/15158917
Abstract
Defects in an intracellular chloride channel CLC-5 cause Dent's disease, an inherited kidney stone disorder. Using a collecting duct model, mIMCD-3 cells, we show expression of dimeric mCLC-5. Transient transfection of antisense CLC-5 reduces CLC-5 protein expression. Binding of both calcium phosphate (hydroxyapatite) and calcium oxalate monohydrate (COM) crystals overlaid onto mIMCD-3 cultures was affected by altered CLC-5 expression. Calcium phosphate crystal agglomerations (>10 microm) were minimal in control (9%) and sense (13%) CLC-5-transfected cells, compared to 66% of antisense CLC-5-transfected cells (P<0.001). Small calcium phosphate crystals (<10 microm) were found associated with 45% of sense CLC-5-treated cells, of which the majority (11/14 cells) appeared to be internalised within the cell. Calcium oxalate agglomerations (>10 microm) were also largely absent for controls or sense mCLC-5 transfectants (11% and 9% of cells, respectively) with COM crystal agglomerates predominating in antisense CLC-5 transfectants (66%, P<0.0001). We conclude that collecting duct cells with reduced CLC-5 expression lead to a tendency to form calcium crystal agglomeration, which may help explain the nephrocalcinosis and nephrolithiasis seen in Dent's disease.