Channelpedia

PubMed 26100633


Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Slo2 , Slo2b



Title: Transcriptional Regulation of the Sodium-activated Potassium Channel SLICK (KCNT2) Promoter by Nuclear Factor-κB.

Authors: Danielle L Tomasello, Amy M Gancarz-Kausch, David M Dietz, Arin Bhattacharjee

Journal, date & volume: J. Biol. Chem., 2015 Jul 24 , 290, 18575-83

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/26100633


Abstract
Although recent studies have shown the sodium-activated potassium channel SLACK (KCNT1) can contribute to neuronal excitability, there remains little information on the physiological role of the closely related SLICK (KCNT2) channel. Activation of SLICK channels may be important during pathological states such as ischemia, in which an increase in intracellular sodium and chloride can perturb membrane potential and ion homeostasis. We have identified two NFκB-binding sites within the promoter region of the human SLICK (KCNT2) and orthologous rat Slick (Kcnt2) genes, suggesting that conditions in which NFκB transcriptional activity is elevated promote expression of this channel. NFκB binding to the rat Slick promoter was confirmed in vivo by ChIP analyses, and NFκB was found differentially bound to the two sites. We verified NFκB transcriptional regulation of SLICK/Slick by mutational analyses and studying gene expression by luciferase assay in P19 cells, where NFκB is constitutively active. For the rat gene, activation of the Slick promoter was found to be additive in single NFκB mutations and synergistic in double mutations. Unexpectedly, for the human gene, NFκB exhibited cooperativity in activating the SLICK promoter. The human SLICK promoter constructs were then tested under hypoxic conditions in PC-12 cells, where NFκB is not active. Only under hypoxic conditions could luciferase activity be detected; the double NFκB mutant construct failed to exhibit activity. Transcriptional regulation of Slick by NFκB was verified in primary neurons. The Slick transcript decreased 24 h after NFκB inhibition. Our data show SLICK expression is predominantly under the control of NFκB. Because neuronal NFκB activation occurs during stressful stimuli such as hypoxia and injury, our findings suggest that SLICK is a neuroprotective gene.