Channelpedia

PubMed 1318033


Referenced in: none

Automatically associated channels: Kv2.1



Title: Depletion of the inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ store in vascular endothelial cells activates the agonist-sensitive Ca(2+)-influx pathway.

Authors: W P Schilling, O A Cabello, L Rajan

Journal, date & volume: Biochem. J., 1992 Jun 1 , 284 ( Pt 2), 521-30

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/1318033


Abstract
Previous studies in non-excitable cells have suggested that depletion of internal Ca2+ stores activates Ca2+ influx from the extracellular space via a mechanism that does not require stimulation of phosphoinositide hydrolysis. To test this hypothesis in vascular endothelial cells, the effect of the Ca(2+)-ATPase/pump inhibitor 2,5-di-t-butylhydroquinone (BHQ) on cytosolic free Ca2+ concentration ([Ca2+]i) was examined. BHQ produced a dose-dependent increase in [Ca2+]i, which remained elevated over basal values for several minutes and was substantially inhibited in the absence of extracellular Ca2+. Application of bradykinin after BHQ demonstrated that the BHQ-sensitive compartment partially overlapped the bradykinin-sensitive store. Similar results were obtained with thapsigargin and cyclopiazonic acid, two other Ca(2+)-ATPase inhibitors. Although BHQ had no effect on phosphoinositide hydrolysis, both 45Ca2+ influx and efflux were stimulated by this agent. These results suggest that depletion of the agonist-sensitive Ca2+ store is sufficient for activation of Ca2+ influx. Several characteristics of the Ca(2+)-influx pathway activated by internal store depletion were compared with those of the agonist-activated pathway. Bradykinin-stimulated Ca2+ influx was increased at alkaline extracellular pH (pHo), and was inhibited by extracellular La3+, by depolarization of the membrane, and by the novel Ca(2+)-influx blocker 1-(beta-[3-(4-methoxyphenyl)propoxy]-4- methoxyphenethyl)-1H-imidazole hydrochloride (SKF 96365). Additionally, bradykinin stimulated influx of both 45Ca2+ and 133Ba2+, consistent with the hypothesis that the agonist-activated influx pathway is permeable to both of these bivalent cations. Likewise, activation of Ca2+ influx by BHQ, thapsigargin and cyclopiazonic acid was blocked by La3+, membrane depolarization and SKF 96365, but was unaffected by nitrendipine or BAY K 8644. Furthermore, Ca2+ influx stimulated by BHQ was increased at alkaline pHo and BHQ stimulated the influx of both 45Ca2+ and 133Ba2+ to the same extent. These results demonstrate that the agonist-activated Ca(2+)-influx pathway and the pathway activated by depletion of the agonist-sensitive internal Ca2+ store are indistinguishable.