PubMed 1383206
Referenced in: none
Automatically associated channels: Kv10.1
Title: Functional reconstitution of a chloride channel protein from bovine trachea.
Authors: S Ran, C M Fuller, M P Arrate, R Latorre, D J Benos
Journal, date & volume: J. Biol. Chem., 1992 Oct 15 , 267, 20630-7
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/1383206
Abstract
We characterized the electrophysiological properties of a chloride channel protein isolated from bovine trachea after incorporation into planar lipid bilayers, and studied the effects of thiol-modulating agents on channel regulation both in bilayers and vesicular iodide uptake studies. Our experiments showed that this protein formed perfectly anion-selective channels in the bilayer, with an anion permeability sequence of I- (2.1) > NO3- (1.7) > Br- (1.2) > Cl- (1.0). The conductance of this channel was 25-30 picosiemens in 150 mM Cl-, and saturated with increasing chloride concentration. This channel could be completely inhibited by 4,4'-bis(isothiocyano)-2,2'-stilbenedisulfonate. Immunoblot analysis, using polyclonal antibodies (anti-p38), revealed one major band at 140 kDa. Upon reduction with dithiothreitol, 64- and 38-kDa polypeptides were observed. Functional experiments showed that reduction was accompanied by loss of 125I- uptake and single-channel activity. In the presence of dithiothreitol, only the low molecular mass protein forms (64 and 38 kDa) were detected by anti-p38 antibodies on Western blots. Cross-linking of S-S bonds with Cu(2+)-o-phenanthroline led to activation of chloride channels in vesicles and bilayers. Over-aggregation of chloride channels by this S-S cross-linking reagent caused inhibition of 125I- uptake by 80-100% and the abolishment of single-channel activity. We propose that the native chloride channel from bovine trachea can exist in vivo in different structural and functional forms depending upon its thiol-disulfide oxidation reduction status. The oxidized form has a molecular mass of 140 kDa and represents a fully active chloride channel. Inactivation of this channel might occur by over-aggregation of protein subunits, or by dissociation of the 140-kDa subunit by disulfide bond reduction.