Channelpedia

PubMed 7683787


Referenced in: none

Automatically associated channels: Kv4.1



Title: Temperature dependence of gap junction properties in neonatal rat heart cells.

Authors: F F Bukauskas, R Weingart

Journal, date & volume: Pflugers Arch., 1993 Apr , 423, 133-9

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/7683787


Abstract
Cell pairs of neonatal rat hearts were used to study the influence of temperature on the electrical properties of gap junctions. A dual voltage-clamp method was adopted, which allowed the voltage gradient between the cells to be controlled and the intercellular current flow to be measured. Cell pairs with normal coupling revealed a positive correlation between the conductance of the junctional membranes, gj, and temperature. Cooling from 37 degrees C to 14 degrees C led to a steeper decrease in gj, cooling from 14 degrees C to -2 degrees C to a shallower decrease (37 degrees C: gj = 48.3 nS; 14 degrees C: gj = 21.4 nS; -2 degrees C: gj = 17.5 nS), corresponding to a temperature coefficient, Q10, of 1.43 and 1.14 respectively. The existence of two Q10 values implies that gj may be controlled by enzymatic reactions. When gj was low, i.e. below 5 nS (conditions: low temperature; treatment with 3 mM heptanol), it showed voltage-dependent gating. This property was not visible when gj was large, i.e. 20-70 nS (conditions: high temperature; normal saline), presumably because of series resistances (pipette resistance). Cell pairs with weak intrinsic coupling and normally coupled cell pairs treated with 3 mM heptanol revealed a positive correlation between the conductance of single gap-junction channels, gamma j, and temperature (37 degrees C: 75.6 pS; -2 degrees C: 19.6 pS), corresponding to a Q10 of 1.41.