Channelpedia

PubMed 7823083


Referenced in: none

Automatically associated channels: Kv1.4 , Kv10.1 , Kv3.1 , Kv4.1 , Kv4.2 , Kv4.3



Title: Identification of molecular components of A-type channels activating at subthreshold potentials.

Authors: P Serôdio, C Kentros, B Rudy

Journal, date & volume: J. Neurophysiol., 1994 Oct , 72, 1516-29

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/7823083


Abstract
1. Xenopus oocytes injected with rat brain mRNA express a transient K+ current similar to the A current that activates transiently near the threshold for Na+ action potential generation (ISA) seen in somatic recordings from neurons. We used hybrid arrest with antisense oligonucleotides to investigate which of the cloned K+ channel proteins might be components of the channels responsible for the ISA expressed from brain mRNA. An oligonucleotide complementary to a sequence common to all known mammalian Shal-related mRNAs [KV4.1, KV4.2, and KV4.3 (the nomenclature of Sh K+ channel genes of Chandy and colleagues was used in this paper)] blocked the expression of the ISA. An oligonucleotide complementary only to the KV4.2 mRNA, the most abundant Shal-related transcript in rat brain RNA preparations, was also quite efficient in arresting the expression of the ISA from brain. These experiments indicate that Shal-related proteins are important components of the channels carrying the ISA expressed in oocytes injected with brain mRNA. However, there are several significant differences between this ISA and the currents expressed in the same oocytes by in vitro transcribed KV4.1 or KV4.2 cRNA. Most of these differences are eliminated if KV4.1 or KV4.2 cRNA is coinjected with brain poly-(A) RNA treated with antisense oligonucleotides which arrest the expression of the ISA, or with a 2-4Kb rat brain poly-(A) RNA fraction which does not express detectable K+ currents under the same recording conditions. These data support the hypothesis that ISA channels such as those expressed from brain mRNA contain Shal proteins that can be modified by proteins encoded in RNAs that by themselves do not express K+ currents.