Channelpedia

PubMed 8697042


Referenced in: none

Automatically associated channels: Kir2.3 , Kv2.1



Title: Molecular biology of serotonin receptors.

Authors: M Baez, J D Kursar, L A Helton, D B Wainscott, D L Nelson

Journal, date & volume: Obes. Res., 1995 Nov , 3 Suppl 4, 441S-447S

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/8697042


Abstract
Over the last several years the use of molecular cloning technology has revealed a vast diversity among serotonin (5-HT) receptors, whereby what was previously thought to be a family of three pharmacologically defined classes of 5-HT receptors is actually composed of seven distinct subfamilies designated 5-HT1-7. The 5-HT1, 5-HT2, and 5-HT5 subfamilies currently consist of five, three and two subtypes respectively while the 5-HT3, 5-HT4, 5-HT6, and 5-HT7 "subfamilies" have at present one subtype each. Fourteen separate genes encode 13 receptors which fall in the superfamily of G protein-coupled receptors and one ligand-gated ion channel receptor. Our lab has contributed to the elucidation of this subtype diversity by cloning the cDNAs from both rat and human encoding the 5-HT2B receptor. This receptor subtype is equally homologous (approximately 70%) to the 5-HT2A and 5-HT2C receptors when amino acids comprising the transmembrane domains are compared and is clearly the third member of the 5-HT2 subfamily. The 5-HT2B receptor has been shown to couple to phosphoinositide hydrolysis as do the other two members of this subfamily when expressed in AV12-664 cells. Limited pharmacological analyses indicated that both rat and human 5-HT2B receptors are similar but distinguishable. With one tantalizing exception, the mRNAs for these receptors appear to be similarly distributed within rat and human. The 5-HT2B receptor mRNA is not found in rat brain, whereas in human brain it has been identified in multiple regions. This later finding suggests that the 5-HT2B receptor may be serving a unique CNS function in man that is absent in rat.