PubMed 9058051
Referenced in: none
Automatically associated channels: Kir6.2
Title: Chondroitin/dermatan sulphate promotes the survival of neurons from rat embryonic neocortex.
Authors: J Kappler, U Junghans, A Koops, C C Stichel, H J Hausser, H Kresse, H W Müller
Journal, date & volume: Eur. J. Neurosci., 1997 Feb , 9, 306-18
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/9058051
Abstract
Recently we have shown that biglycan, a small chondroitin sulphate proteoglycan of the extracellular matrix, supports the survival of cultured neurons from the developing neocortex of embryonic day 15 rats. Here we investigate the structure-function relationship of this neurotrophic proteoglycan and show that chondroitin/dermatan sulphate chains are the active moieties supporting survival. Heparin, a highly sulphated glucosaminoglycan, is less active than the galactosaminoglycans (chondroitin-4-sulphate, chondroitin-6-sulphate and dermatan sulphate), whereas hyaluronic acid, an unsulphated glucosaminoglycan, does not support neuron survival. Galactosaminoglycans must be in direct contact with neurons to cause survival. Experiments with elevated potassium concentrations and antagonists of voltage-gated calcium channels exclude the involvement of membrane depolarization. However, genistein and an erbstatin analogue, which are inhibitors of tyrosine kinases with low specificity, abolished neuron survival in the presence of chondroitin/dermatan sulphate, whereas a selective inhibitor of neurotrophin receptor kinases (K252a) had no suppressive effect. Thus, yet unidentified tyrosine kinases are involved in the chondroitin/dermatan sulphate-dependent survival of neocortical neurons. In the embryonic stages of rat neocortical development chondroitin sulphate is mainly located in layers I, V and VI and the subplate. Chondroitin sulphate expression is maintained after birth, extends up to cortical layer IV on postnatal day 7, and is down-regulated until postnatal day 21 concomitant with the period of naturally occurring cell death. The latter observation is consistent with a putative role of chondroitin sulphate in the control of neuron survival during cortical histogenesis.