Channelpedia

PubMed 9242641


Referenced in: none

Automatically associated channels: Kir6.2



Title: Expression of the ryanodine receptor type 3 calcium release channel during development and differentiation of mammalian skeletal muscle cells.

Authors: P Tarroni, D Rossi, A Conti, V Sorrentino

Journal, date & volume: J. Biol. Chem., 1997 Aug 8 , 272, 19808-13

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/9242641


Abstract
In vertebrate skeletal muscles, the type 1 isoform of ryanodine receptor (RyR1) is essential in triggering contraction by releasing Ca2+ from the sarcoplasmic reticulum in response to plasma membrane depolarisation. Recently, the presence of another RyR isoform, RyR3, has been detected in mammalian skeletal muscle cells, raising the question of the eventual relevance of RyR3 for muscle cell physiology. The expression of RyR3 was investigated during differentiation of skeletal muscle cells. Using antibodies able to distinguish the different RyR isoforms and Western blot analysis, the RyR3 protein was detected in the microsomal fractions of differentiated skeletal muscle cells but not of undifferentiated cells. Accordingly, blocking muscle differentiation by the addition of either transforming growth factor-beta or basic fibroblast growth factor prevented the expression of the RyR3 protein. In differentiated skeletal muscle cells, RyR3 was expressed independent of cell fusion and myotube formation. The expression of RyR3 was also investigated during development of the diaphragm muscle. The RyR3 content in the diaphragm muscle increased between the late stage of fetal development and the first postnatal days. However, at variance with RyR1, which reached maximum levels of expression 2-3 weeks after birth, the expression of RyR3 was found to be higher in the neonatal phase of the diaphragm muscle development (2-15 days after birth) than in the same muscle from adult mice. The differential content of RyR3 in adult skeletal muscles was found not to be mediated by neurotrophic factors or electrical activity. These findings indicate that RyR3 is preferentially expressed in differentiated skeletal muscle cells. In addition, during skeletal muscle development, its expression is regulated differently from that of RyR1.