Channelpedia

PubMed 19121636


Referenced in: none

Automatically associated channels: Slo1



Title: Computational study of non-homogeneous distribution of Ca(2+) handling systems in cerebellar granule cells.

Authors: E E Saftenku

Journal, date & volume: J. Theor. Biol., 2009 Mar 21 , 257, 228-44

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/19121636


Abstract
The spatiotemporal distribution of cytosolic free calcium concentration ([Ca(2+)](i)) in cerebellar granule cells (GrCs) is thought to be critical in defining the occurrence and direction of long-term changes in synaptic strength at cerebellar mossy fiber-GrC synapses. Despite this, the mechanisms responsible for shaping Ca(2+) transients in GrCs are not well understood. To investigate the interplay between Ca(2+) entry, extrusion, buffering and dendritic morphology in shaping Ca(2+) elevations in GrCs, we developed a model of Ca(2+) regulation in these cells and examined the requirements for reproducing fluorescence responses to depolarization and synaptic stimulation previously described in the literature. Two conclusions can be drawn from our simulation results. First, a significant progressive decrease in the amplitudes of depolarization-evoked fluorescence transients from the dendritic endings (digits) toward the soma of GrCs, can be reproduced in the model only if the density of Ca(2+) channels is considerably higher or the concentration of endogenous buffers is much lower in the digits than in the parent dendrites. In contrast, heterogeneities in the distribution of Ca(2+) pumps or in cytosolic fractional volume cannot account for the formation of [Ca(2+)](i) gradients in GrCs. Second, much lower amplitudes of fluorescence transients induced by depolarization and synaptic stimulation than expected from typical measurements of Ca(2+) and NMDA receptor-mediated currents can be reconciled with a pronounced slowing of the decay of fluorescence responses in the digits of GrCs after introducing a high-affinity Ca(2+) indicator if a high-capacity immobile Ca(2+) buffer (presumably plasma membrane-associated) is suggested to be present in the soma and apical part of digits. Mitochondria also are likely to modulate synaptically evoked Ca(2+) responses in GrCs. The alternative hypotheses are thoroughly discussed and research avenues for their testing in future experiments are proposed.