PubMed 10090886
Referenced in: none
Automatically associated channels: Kv7.1
Title: Mutations in a dominant-negative isoform correlate with phenotype in inherited cardiac arrhythmias.
Authors: R Mohammad-Panah, S Demolombe, N Neyroud, P Guicheney, F Kyndt, M van den Hoff, I Baró, D Escande
Journal, date & volume: Am. J. Hum. Genet., 1999 Apr , 64, 1015-23
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/10090886
Abstract
The long QT syndrome is characterized by prolonged cardiac repolarization and a high risk of sudden death. Mutations in the KCNQ1 gene, which encodes the cardiac KvLQT1 potassium ion (K+) channel, cause both the autosomal dominant Romano-Ward (RW) syndrome and the recessive Jervell and Lange-Nielsen (JLN) syndrome. JLN presents with cardiac arrhythmias and congenital deafness, and heterozygous carriers of JLN mutations exhibit a very mild cardiac phenotype. Despite the phenotypic differences between heterozygotes with RW and those with JLN mutations, both classes of variant protein fail to produce K+ currents in cultured cells. We have shown that an N-terminus-truncated KvLQT1 isoform endogenously expressed in the human heart exerts strong dominant-negative effects on the full-length KvLQT1 protein. Because RW and JLN mutations concern both truncated and full-length KvLQT1 isoforms, we investigated whether RW or JLN mutations would have different impacts on the dominant-negative properties of the truncated KvLQT1 splice variant. In a mammalian expression system, we found that JLN, but not RW, mutations suppress the dominant-negative effects of the truncated KvLQT1. Thus, in JLN heterozygous carriers, the full-length KvLQT1 protein encoded by the unaffected allele should not be subject to the negative influence of the mutated truncated isoform, leaving some cardiac K+ current available for repolarization. This is the first report of a genetic disease in which the impact of a mutation on a dominant-negative isoform correlates with the phenotype.