Channelpedia

PubMed 9987083


Referenced in: none

Automatically associated channels: ClC4



Title: Cl- channels in basolateral TAL membranes: XIII. Heterogeneity between basolateral MTAL and CTAL Cl- channels.

Authors: C J Winters, W B Reeves, T E Andreoli

Journal, date & volume: Kidney Int., 1999 Feb , 55, 593-601

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/9987083


Abstract
Antidiuretic hormone (ADH) or adenosine 3', 5'-cyclic phosphate (cAMP) analogues augment net NaCl absorption in microperfused mouse medullary thick ascending limb (MTAL) segments but not in cortical thick ascending limb (CTAL) segments. This ADH-dependent MTAL effect is due to increased apical Na+/K+/2Cl- admittance and apical K+ recycling accompanied by a rise in calculated intracellular Cl- concentrations and by a threefold rise in basolateral Cl- conductance. rbClC-Ka, a 75.2 member of the ClC family of Cl- channels, mediates net Cl- absorption in the MTAL. The gating characteristics of rbClC-Ka channels from their intracellular surfaces are, to our knowledge, unique among Cl- channels. The channels are activated by small increases in intracellular Cl- (K1/2 = 10 mM Cl-). Adenosine triphosphate plus the catalytic subunit of protein kinase A (ATP + PKA) gate rbClC-Ka when cytosolic Cl- concentrations are 25 mM. Thus, in mouse MTAL segments, ADH-dependent rises in cytosolic Cl- are primarily responsible for basolateral Cl- conductance increases.These experiments compared the properties of Cl- channels fused into bilayers from basolaterally enriched vesicles from cultured mouse CTAL cells with rbClC-Ka channels.The key findings were that anti-rbClC-Ka, antibody that recognizes and blocks rbClC-Ka, recognized and blocked basolateral Cl- channels in CTAL cells, that the extracellular faces of the CTAL channels were, like rbClC-Ka, substrate gated with a K1/2 of approximately 170 mM Cl-, and that, unlike rbClC-Ka channels, cytosolic faces of basolateral CTAL Cl- channels were not gated by either increasing cytosolic Cl- concentrations or cytosolic (ATP + PKA). This failure of activation of basolateral CTAL Cl- channels was confirmed using excised patch clamp studies. Finally, on Western blots, anti-rbClC-Ka recognized a 74 kDa band on basolateral CTAL vesicles.Basolateral CTAL Cl- channels probably share a high degree of structural homology and possibly molecular mass with rbClC-Ka channels. However, significant differences between rbClC-Ka channels and CTAL Cl- channels account for the inability of increasing either cytosolic Cl- or (PKA + ATP) to raise Po in CTAL basolateral Cl- channels.