Channelpedia

PubMed 11238279


Referenced in: none

Automatically associated channels: Kv11.1 , Kv7.1



Title: Short- and long-term effects of amiodarone on the two components of cardiac delayed rectifier K(+) current.

Authors: K Kamiya, A Nishiyama, K Yasui, M Hojo, M C Sanguinetti, I Kodama

Journal, date & volume: Circulation, 2001 Mar 6 , 103, 1317-24

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/11238279


Abstract
Amiodarone is the most promising drug for the treatment of life-threatening tachyarrhythmias in patients with structural heart disease. The pharmacological effects of amiodarone on cardiac ion channels are complex and may differ for short-term and long-term administration.The delayed rectifier K(+) current (I(K)) of ventricular myocytes isolated from rabbit hearts was recorded with the whole-cell voltage-clamp technique. I(K) was separated into 2 components by use of specific blockers for either I(Ks) (chromanol 293B, 30 micromol/L) or I(Kr) (E-4031, 10 micromol/L). Short-term application of amiodarone caused a concentration-dependent decrease in I(Kr) with an IC(50) of 2.8 micromol/L (n=8) but only a minimal reduction in I(Ks). The short-term effects of amiodarone were also determined in Xenopus oocytes expressing the cloned human channels that conduct I(Kr) and I(Ks) (HERG and KvLQT1/minK). HERG current in oocytes was reduced by amiodarone (IC(50)=38 micromol/L), whereas KvLQT1/minK current was unaffected by 300 micromol/L amiodarone. To study the effects of long-term drug administration, rabbits were treated for 4 weeks with oral amiodarone (100 mg. kg(-1). d(-1)) before cell isolation. Long-term administration of amiodarone decreased I(K) to 55% (n=10) in control rabbits and altered the relative density of I(Kr) and I(Ks). The majority (92%) of current was I(Kr). mRNA levels of rabbit ERG,KVLQT1, and minK in left ventricular myocardium did not differ between control and long-term amiodarone.Amiodarone has differential effects on the 2 components of I(K), depending on the application period; short-term treatment inhibits primarily I(Kr), whereas long-term treatment reduces I(Ks).