PubMed 11440975
Referenced in: none
Automatically associated channels: Kv11.1
Title: Molecular interactions between two long-QT syndrome gene products, HERG and KCNE2, rationalized by in vitro and in silico analysis.
Authors: R Mazhari, J L Greenstein, R L Winslow, E Marbán, H B Nuss
Journal, date & volume: Circ. Res., 2001 Jul 6 , 89, 33-8
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/11440975
Abstract
The cardiac delayed rectifier potassium current mediates repolarization of the action potential and underlies the QT interval of the ECG. Mutations in either of the two molecular components of the rapid delayed rectifier (I(K,r)), HERG and KCNE2, have been linked to heritable or acquired long-QT syndrome. Mechanisms whereby mutations of KCNE2 produce fatal cardiac arrhythmias characteristic of long-QT syndrome remain unclear. In this study, we characterize functional interactions between HERG and KCNE2 with a view to defining underlying mechanisms for action potential prolongation and long-QT syndrome. Whereas coexpression of hKCNE2 with HERG alters both kinetics and density of ionic current, incorporation of these effects into a quantitative model of the action potential predicts that only changes in current density significantly affect repolarization. Thus, the primary functional consequence of hKCNE2 on action potential morphology is through modulation of I(K,r) density, as predicted by the model. Mutations associated with long-QT syndrome that result only in modest changes of gating kinetics may be epiphenomena or may modulate action potential repolarization via interaction with alternative pore-forming potassium channel alpha subunits.