PubMed 10984483

Referenced in Channelpedia wiki pages of: none

Automatically associated channels: Cav1.2

Title: Protein phosphatase 2A is associated with class C L-type calcium channels (Cav1.2) and antagonizes channel phosphorylation by cAMP-dependent protein kinase.

Authors: M A Davare, M C Horne, J W Hell

Journal, date & volume: J. Biol. Chem., 2000 Dec 15 , 275, 39710-7

PubMed link:

Phosphorylation by cAMP-dependent protein kinase (PKA) regulates a vast number of cellular functions. An important target for PKA in brain and heart is the class C L-type Ca(2+) channel (Ca(v)1.2). PKA phosphorylates serine 1928 in the central, pore-forming alpha(1C) subunit of this channel. Regulation of channel activity by PKA requires a proper balance between phosphorylation and dephosphorylation. For fast and specific signaling, PKA is recruited to this channel by an protein kinase A anchor protein (Davare, M. A., Dong, F., Rubin, C. S., and Hell, J. W. (1999) J. Biol. Chem. 274, 30280-30287). A phosphatase may be associated with the channel to effectively balance serine 1928 phosphorylation by channel-bound PKA. Dephosphorylation of this site is mediated by a serine/threonine phosphatase that is inhibited by okadaic acid and microcystin. We show that immunoprecipitation of the channel complex from rat brain results in coprecipitation of PP2A. Stoichiometric analysis indicates that about 80% of the channel complexes contain PP2A. PP2A directly and stably binds to the C-terminal 557 amino acids of alpha(1C). This interaction does not depend on serine 1928 phosphorylation and is not altered by PP2A catalytic site inhibitors. These results indicate that the PP2A-alpha(1C) interaction constitutively recruits PP2A to the channel complex rather than being a transient substrate-catalytic site interaction. Functional assays with the immunoisolated class C channel complex showed that channel-associated PP2A effectively reverses serine 1928 phosphorylation by endogenous PKA. Our findings demonstrate that both PKA and PP2A are integral components of the class C L-type Ca(2+) channel that determine the phosphorylation level of serine 1928 and thereby channel activity.