Channelpedia

PubMed 11181429


Referenced in: none

Automatically associated channels: Kv10.1



Title: A1 adenosine receptors inhibit multiple voltage-gated Ca2+ channel subtypes in acutely isolated rat basolateral amygdala neurons.

Authors: B A McCool, J S Farroni

Journal, date & volume: Br. J. Pharmacol., 2001 Feb , 132, 879-88

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/11181429


Abstract
1. The anticonvulsant properties of 2-chloroadenosine (CADO) in the basolateral amygdala rely on the activation of adenosine-specific heptahelical receptors. We have utilized whole-cell voltage-clamp electrophysiology to examine the modulatory effects of CADO and other adenosine receptor agonists on voltage-gated calcium channels in dissociated basolateral amygdala neurons. 2. CADO, adenosine, and the A1 subtype-selective agonists N6-(L-2-Phenylisopropyl)adenosine (R-PIA) and 2-chloro-N6-cyclopentyladenosine (CCPA) reversibly modulated whole cell Ba2+ currents in a concentration-dependent fashion. CADO inhibition of barium currents was also sensitive to the A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX). 3. The A2A-selective agonist 4-[2-[[6-Amino-9-(N-ethyl-beta-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid (CGS21680) was without effect. 4. CADO inhibition was predominantly voltage-dependent and sensitive to the sulphydryl-modifying reagent N:-ethylmaleimide, implicating a membrane-delimited, G(i/o)-coupled signal transduction pathway in the channel regulation. 5. Using Ca2+ channel subtype-selective antagonists, CADO inhibition appeared to target multiple channel subtypes, with the inhibition of omega-conotoxin GVIA-sensitive calcium channels being more prominent. 6. Our results indicate that the anti-convulsant effects CADO in the basolateral amygdala may be mediated, in part, by the A1 receptor-dependent inhibition of voltage gated calcium channels.