Channelpedia

PubMed 12591092


Referenced in: none

Automatically associated channels: Kv7.2 , Kv7.3



Title: Activation of muscarinic m5 receptors inhibits recombinant KCNQ2/KCNQ3 K+ channels expressed in HEK293T cells.

Authors: Juan Guo, Geoffery G Schofield

Journal, date & volume: Eur. J. Pharmacol., 2003 Feb 21 , 462, 25-32

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/12591092


Abstract
A variety of G-protein-coupled receptors regulate membrane excitability via M-type K(+) current (M-current) modulation. Muscarinic m1 and m3 acetylcholine receptors have both been implicated in the modulation of M-current. The muscarinic m5 receptor, like muscarinic m1 and m3 receptors, couples to phospholipase C via a pertussis toxin-insensitive G protein. Since a number of other receptors which activate phospholipase C also modulate M-current, we investigated if muscarinic m5 receptors could modulate recombinant M-type (KCNQ2/KCNQ3) K(+) channels after heterologous expression in human embryonic kidney (HEK) 293T cells. Application of Oxo-tremorine M to HEK293T cells expressing muscarinic m1, m3, or m5 receptors produced a similar robust inhibition of M-current, whereas muscarinic m2 and m4 receptor stimulation was without effect. Muscarinic m1, m3, or m5 receptor stimulation decreased the deactivation time constants of M-current at -50 mV. The inhibition of M-current by stimulation of muscarinic m1, m3, or m5 receptors was insensitive to overnight treatment with pertussis toxin or cholera toxin, which interfere with G(i/o) and G(s) G-protein signaling. These data suggest that muscarinic m1, m3, and m5 receptors inhibit M-channels via the activation of a common G protein.