Channelpedia

PubMed 11989645


Referenced in: none

Automatically associated channels: Kv10.1 , Slo1



Title: Extracellular polyvalent cation block of slow Na+ channels in Xenopus laevis oocytes.

Authors: S Quinteiro-Blondin, G Charpentier

Journal, date & volume: Gen. Physiol. Biophys., 2001 Dec , 20, 331-48

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/11989645


Abstract
Sustained depolarization of the Xenopus oocyte membrane elicits a slowly activating Na+ current, thought to be due to the opening of sodium selective channels. These channels are induced to become voltage gated by the depolarization. They show unconventional gating properties and are insensitive to tetrodotoxin (TTX). The present study was undertaken to evaluate the effect of extracellular multivalent cations (Ca2+, Co2+, Cd2+, La3+, Mg2+, Mn2+, Ni2+, Sr2+ and Zn2+) on these TTX-resistant channels, either on membrane potential responses or on current responses. Our data show that all the polyvalent cations used blocked Na+ channels in a concentration-dependent manner. The order of potency of the most efficient cations was Co2+ < Ni2+ < Cd2+ < Zn2+, the respective concentration required to cause a 50% decrease of Na+ current was 0.9+/-0.29; 0.47+/-0.15; 0.36+/-0.09 and 0.06+/-0.02 mmol/l. The comparison of the activation curves from controls and after treatment with the cations indicated a shift towards more positive voltages. These results can be interpreted as due to the screening effect of divalent cations together with an alteration of the Na+ channel gating properties. We also show that divalent cations blocked Na+ channels in an open state without interfering with the induction mechanism of the channels. The possibility that cation block was due to a possible interaction between cations and SH-groups was investigated, but a sulphydryl alkylating reagent failed to abolish Zn2+ block.