PubMed 12446588
Referenced in: none
Automatically associated channels: Kv10.1
Title: Orexin-A augments voltage-gated Ca2+ currents and synergistically increases growth hormone (GH) secretion with GH-releasing hormone in primary cultured ovine somatotropes.
Authors: Ruwei Xu, Qinling Wang, Ming Yan, Maria Hernandez, Changhong Gong, Wah Chin Boon, Yoko Murata, Yoichi Ueta, Chen Chen
Journal, date & volume: Endocrinology, 2002 Dec , 143, 4609-19
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/12446588
Abstract
Orexins are recently discovered neuropeptides that play an important role in the regulation of hormone secretion, and their receptors have been recently demonstrated in the pituitary. The effects of orexin-A on voltage-gated Ca2+ currents and GH release in primary cultured ovine somatotropes were examined. The expression of orexin-1 receptor was demonstrated by RT-PCR in ovine somatotropes, from which Ca2+ currents were also isolated as L, T, and N currents. Application of orexin-A (100 nM) significantly and reversibly increased only the L current, and coadministration of orexin-A and GHRH (10 nM) showed an additive effect on this current, but no effect of orexin-A was observed on either T or N current. Furthermore, the orexin-A-induced increase in the L current was completely abolished by the inhibition of protein kinase C (PKC) activity using calphostin C (100 nM), phorbal 12,13-dibutyrate pretreatment (0.5 micro M) for 16 h or specific PKC inhibitory peptide PKC(19-36) (1 mM). However, the increase in L current by orexin-A was sustained when cells were preincubated with a specific protein kinase A blocker H89 (1 micro M) or a specific intracellular Ca2+ store depleting reagent thapsigargin (1 micro M). Finally, orexin-A alone did not significantly increase GH release, but coadministration of orexin-A and GHRH showed a synergistic effect on GH secretion in vitro. Our results therefore suggest that orexin-A may play an important role in regulating GHRH-stimulated GH secretion through the enhancement of the L-type Ca2+ current and the PKC-mediated signaling pathway in ovine somatotropes.