PubMed 19264765
Referenced in: none
Automatically associated channels: Kv7.1
Title: Re-evaluating the efficacy of beta-adrenergic agonists and antagonists in long QT-3 syndrome through computational modelling.
Authors: Rebecca C Ahrens-Nicklas, Colleen E Clancy, David J Christini
Journal, date & volume: Cardiovasc. Res., 2009 Jun 1 , 82, 439-47
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/19264765
Abstract
Long QT syndrome (LQTS) is a heterogeneous collection of inherited cardiac ion channelopathies characterized by a prolonged electrocardiogram QT interval and increased risk of sudden cardiac death. Beta-adrenergic blockers are the mainstay of treatment for LQTS. While their efficacy has been demonstrated in LQTS patients harbouring potassium channel mutations, studies of beta-blockers in subtype 3 (LQT3), which is caused by sodium channel mutations, have produced ambiguous results. In this modelling study, we explore the effects of beta-adrenergic drugs on the LQT3 phenotype.In order to investigate the effects of beta-adrenergic activity and to identify sources of ambiguity in earlier studies, we developed a computational model incorporating the effects of beta-agonists and beta-blockers into an LQT3 mutant guinea pig ventricular myocyte model. Beta-activation suppressed two arrhythmogenic phenomena, transmural dispersion of repolarization and early after depolarizations, in a dose-dependent manner. However, the ability of beta-activation to prevent cardiac conduction block was pacing-rate-dependent. Low-dose beta-blockade by propranolol reversed the beneficial effects of beta-activation, while high dose (which has off-target sodium channel effects) decreased arrhythmia susceptibility.These results demonstrate that beta-activation may be protective in LQT3 and help to reconcile seemingly conflicting results from different experimental models. They also highlight the need for well-controlled clinical investigations re-evaluating the use of beta-blockers in LQT3 patients.